umwelt-online: MVV TB - Muster-Verwaltungsvorschrift Technische Baubestimmungen (4)

zurück

Zur aktuellen Fassung

.

Anforderungen an Feststellanlagen
Stand: Juli 2017
Anhang 7

Für bauordnungsrechtliche Anforderungen in dieser Technischen Baubestimmung ist eine Abweichung nach § 85a Abs. 1 Satz 3 MBO 1 ausgeschlossen; eine Abweichung von bauordnungsrechtlichen Anforderungen kommt nur nach § 67 MBO 1 in Betracht. § 16a Abs. 2 und § 17 Abs. 1 MBO 1 bleiben unberührt.

1 Anwendungsbereich

In diesem Dokument werden die grundsätzlichen allgemeinen bauaufsichtlichen Anforderungen für Feststellanlagen zur Verwendung innerhalb von Gebäuden für Feuerschutzabschlüsse, Rauchschutzabschlüsse und Feuerschutzabschlüsse im Zuge bahngebundener Förderanlagen sowie andere Abschlüsse, die die Eigenschaft "selbstschließend" aufweisen (im Folgenden "Abschlüsse" genannt) konkretisiert.

Die Kompatibilität aller zu einer Feststellanlage gehörenden Geräte ist in einer Bauartgenehmigung nachzuweisen. In der jeweiligen Bauartgenehmigung sind außerdem Festlegungen zur Planung, Bemessung und Ausführung der Feststellanlage zu treffen.

Hinweis:

Kraftbetätigte Abschlüsse müssen bei Ausfall der Energieversorgung oder bei einem anderen Störfall mittels gespeicherter mechanischer Energie sicher geschlossen werden.

Für die Antriebe, Steuerung und Energieversorgung von kraftbetätigten Abschlüssen, die auch elektromotorisch, pneumatisch oder hydraulisch geschlossen werden, sind im bauaufsichtlichen Verfahren auf den Einzelfall abgestimmte Vereinbarungen festzulegen und nachzuweisen.

2 Begriffe

2.1 Feststellanlage

Feststellanlage ist ein System bestehend aus Geräten oder Gerätekombinationen, das geeignet ist, die Funktion von Schließmitteln kontrolliert unwirksam zu machen.

Anmerkung:

Beim Ansprechen der zugehörigen Auslösevorrichtung im Fall eines Brandalarmes, einer Störung oder durch Handauslösung werden offenstehende Abschlüsse selbsttätig durch die Schließmittel geschlossen. Eine Feststellanlage besteht aus mindestens einem Brandmelder, einer Auslösevorrichtung, einer Feststellvorrichtung, einer Energieversorgung, einem Handauslösetaster 2 und ggf. Sicherheitseinrichtungen.

2.2 Brandmelder

Brandmelder ist das Gerät einer Feststellanlage, das eine geeignete physikalische und/oder chemische Kenngröße zur Erkennung eines Brandes in dem zu überwachenden Bereich ständig oder in aufeinander folgenden Zeitintervallen misst und bei Überschreitung eines eingestellten Grenzwertes mittels überwachter Übertragungswege eine Meldung an die Auslösevorrichtung leitet.

2.3 Auslösevorrichtung

Auslösevorrichtung ist das Gerät einer Feststellanlage, das die von anderen Geräten dieser Feststellanlage (z.B. Brandmeldern) abgegebenen Signale verarbeitet und bei Erfüllung bestimmter Kriterien die angeschlossene Feststellvorrichtung auslöst 3.

2.4 Feststellvorrichtung

Feststellvorrichtung ist das Gerät einer Feststellanlage, das die zum Schließen erforderliche Energie in gespeichertem Zustand hält und den Abschluss bei entsprechendem Signal der Auslösevorrichtung oder des Handauslösetasters (der Handauslöseeinrichtung) zum Schließen freigibt.

2.5 Schließmittel

Schließmittel ist das Zubehörteil eines Abschlusses, das bewegliche Abschlüsse mittels gespeicherter Energie 4 selbsttätig schließt.

2.6 Energieversorgung

Energieversorgung ist das Gerät einer Feststellanlage, das der elektrischen Versorgung von Brandmeldern, Auslösevorrichtungen, Feststellvorrichtungen und ggf. Sicherheitseinrichtungen dient.

2.7 Sicherheitseinrichtungen

2.7.1 Sicherheitseinrichtungen für den Personenschutz an Abschlüssen

Sicherheitseinrichtungen für den Personenschutz an Abschlüssen sind Geräte einer Feststellanlage (Schutzeinrichtungen, die die Anforderungen der geltenden Unfallverhütungsvorschriften erfüllen, z.B. Kontaktleisten nach DIN EN 12978), die im Fall eines Brandalarmes, einer Störung oder einer Handauslösung nicht abgeschaltet werden. Sie müssen Personen oder Gegenstände, die sich im Schließbereich des Abschlusses befinden, vor unzulässigen Krafteinwirkungen bewahren (z.B. durch Unterbrechung des Schließvorganges).

2.7.2 Sicherheitseinrichtungen für die Schließbereichsüberwachung bei Feuerschutzabschlüssen im Zuge bahngebundener Förderanlagen

Sicherheitseinrichtungen für die Schließbereichsüberwachung bei Feuerschutzabschlüssen im Zuge bahngebundener Förderanlagen sind Geräte einer Feststellanlage (geeignete Sensoren, z.B. Lichtschranken), die im Fall eines Brandalarmes, einer Störung oder einer Handauslösung nicht abgeschaltet werden. Sie müssen das Einleiten eines Schließvorganges verzögern oder den eingeleiteten Schließvorgang unterbrechen, wenn sich Gegenstände im Schließbereich des Abschlusses befinden.

2.8 Brandmeldeanlage

Brandmeldeanlage ist eine Gruppe von Bestandteilen nach DIN EN 54-x einschließlich einer Brandmelderzentrale, die bei Anordnung in einer festgelegten Konfiguration in der Lage ist, einen Brand zu erkennen, zu melden und Signale zur Einleitung entsprechender Aktionen abzugeben.

2.9 Störung der Sicherheitseinrichtungen

Störung der Sicherheitseinrichtungen ist die Beeinträchtigung der funktionalen Sicherheit der Schutzfunktion oder der Ausfall der Sicherheitseinrichtung.

2.10 Freigabe des Abschlusses

Freigabe des Abschlusses ist die Aufhebung der Feststellung des Abschlusses, sodass das Schließmittel den Abschluss in Schließrichtung bewegen kann.

Anmerkung:

Die Dauer von der Branddetektion durch die zugehörigen Brandmelder oder dem Auftreten einer Störung oder der Betätigung des Handauslösetasters bis zur Freigabe des Abschlusses setzt sich wie folgt zusammen:

Zeit von der Branddetektion durch die zugehörigen Brandmelder oder dem Auftreten einer Störung oder der Betätigung des Handauslösetasters bis zur Auslösung der Feststellvorrichtung (siehe Abschnitt 3.3.1, max. 10 s).

+

Zeit für die Oberwindung der Remanenz in der Feststellvorrichtung bis zur Freigabe des Abschlusses (siehe Abschnitt 3.4.2, max. 3 s).

2.11 Abkürzungen

BM Brandmelder

BMa Brandmeldeanlage

Fsta Feststellanlage

FstV Feststellvorrichtung

HAT Handauslösetaster

PS Personenschutz

SBÜ Schließbereichsüberwachung

SE Sicherheitseinrichtungen

3 Anforderungen an die Feststellanlage und deren Komponenten

3.1 Feststellanlage

3.1.1 Allgemeines

(1) Jede Gerätekombination einer Feststellanlage muss die Anforderungen der Normen zur Umsetzung der Richtlinie 2006/95/EG (hier DIN EN 60950-1 oder DIN EN 60335-1) und der Richtlinie 2004/108/EG (hier DIN EN 61000-6-2, DIN EN 61000-6-3 und DIN EN 61000-3-2, DIN EN 61000-3-3) erfüllen.

(2) Falls die brandschutz- und/oder sicherheitsrelevanten Funktionen der Feststellanlage, die im Brandfall nicht abgeschaltet werden, mittels Software gesteuert werden, muss diese die Anforderungen nach DIN EN 54-2, Abschnitt 13, sinngemäß erfüllen.

(3) Für jedes Gerät der Feststellanlage muss der Antragsteller Angaben zu den zulässigen Umgebungsbedingungen (mindestens Lufttemperatur und relative Feuchte oder alternativ Klimaklasse nach DIN EN 60721-3-3) während des Betriebes vom jeweiligen Hersteller einholen (sofern er die Geräte nicht selbst herstellt) und zur Verfügung stellen 5. Diese Angaben werden in die Zulassung aufgenommen.

(4) Für jedes Gehäuse der Feststellanlage oder Gehäuse eines Gerätes der Feststellanlage muss der Antragsteller den Schutzgrad nach DIN EN 60529 angeben.

(5) Geräte der Feststellanlage, die unmittelbar auf den Feuerschutzabschluss (einschl. Zarge) montiert werden, müssen durch die Prüfstelle bzgl. der am Montageort im Brandfall zulässigen Oberflächentemperaturen (siehe DIN 4102-5 bzw. DIN EN 1634-1) bewertet werden (Beratung im Zuge der Bauartgenehmigung erforderlich).

3.1.2 Feststellanlagen, die nur in Verbindung mit einer bestimmten Brandmeldeanlage verwendet werden dürfen

Bei diesen Feststellanlagen ist die Auslösevorrichtung Bestandteil einer Brandmeldeanlage. Die Auslösevorrichtung mit den angeschlossenen Brandmeldern wird durch die Energieversorgung der Brandmeldeanlage versorgt. Für die Feststellvorrichtungen ist eine separate Energieversorgung erforderlich.

3.1.3 Feststellanlagen für Abschlüsse, bei denen der Personenschutz im Brandfall berücksichtigt werden muss

Bei Feststellanlagen für Abschlüsse, bei denen der Personenschutz im Brandfall berücksichtigt werden muss, darf der Schließvorgang unterbrochen werden. Nach Freiwerden des Schließbereiches muss sich der Schließvorgang aus jeder Öffnungsstellung selbsttätig fortsetzen.

Diese Feststellanlagen sind mit Sicherheitseinrichtungen nach Abschnitt 2.7.1 auszuführen und müssen mit einer zweiten Energieversorgung nach Abschnitt 3.5.3 ausgestattet sein.

3.1.4 Feststellanlagen für Feuerschutzabschlüsse im Zuge bahngebundener Förderanlagen

Bei Feststellanlagen für Feuerschutzabschlüsse im Zuge bahngebundener Förderanlagen darf die Freigabe des Schließvorganges durch die Feststellvorrichtung verzögert oder der Schließvorgang unterbrochen werden. Nach Freiwerden des Schließbereiches muss sich der Schließvorgang aus jeder Öffnungsstellung selbsttätig fortsetzen. Bei einer dauerhaften Belegung des Schließbereiches über 120 s muss eine Zwangsschließung eingeleitet werden 6.

Bei planmäßig dauerhafter Belegung der Förderbahn mit Fördergut (z.B. Schüttgüter, Transportgüter, die in dichter Folge transportiert werden) darf bei Brandalarm ohne Verwendung von Sicherheitssensoren eine verzögerte Zwangsschließung nach Freiräumung des Schließbereiches erfolgen.

Diese Feststellanlagen sind mit Sicherheitseinrichtungen nach Abschnitt 2.7.2 auszuführen und müssen mit einer zweiten Energieversorgung nach Abschnitt 3.5.3 ausgestattet sein.

3.2 Brandmelder

3.2.1 Rauchmelder

Rauchmelder müssen DIN EN 54-7 entsprechen. Andere Rauchmelder sind nach Abstimmung mit dem DIBt in Anlehnung an die v. g. Norm bzgl. der Einhaltung der Anforderungen zu prüfen (siehe auch Abschnitt 3.2.7). Für Melder, die radioaktive Präparate enthalten, muss zusätzlich die Strahlenschutzverordnung beachtet werden.

3.2.2 Wärmemelder

Wärmemelder müssen DIN EN 54-5, Melderklasse A1, A1 R oder A1 S entsprechen. Bei der Verwendung von Wärmemeldern mit höheren Melderklassen sind ggf. Maßnahmen zum thermischen Schutz der Geräte der Feststellanlage erforderlich.

Andere Wärmemelder sind nach Abstimmung mit dem DIBt in Anlehnung an die v. g. Norm bzgl. der Einhaltung der Anforderungen zu prüfen.

3.2.3 Maßnahmen gegen Verstellen der Melder

Der eingestellte Schwellenwert ist durch entsprechende Maßnahmen gegen fahrlässige Verstellung sowie gegen Eingriffe Unbefugter zu schützen.

3.2.4 Rückstellen der Melder

Nach dem Ansprechen eines Melders muss die Wiederherstellung der Funktionsbereitschaft einfach möglich sein. Eine automatische Rückstellung des Melders ist zulässig.

3.2.5 Rauchansaugsysteme

Rauchansaugsysteme müssen DIN EN 54-20 und den folgenden Anforderungen entsprechen:

3.2.6 Rauchmelder in Gehäusen zur Montage an senkrechten Bauteilen

Rauchmelder in Gehäusen zur Montage an senkrechten Bauteilen müssen die Anforderungen nach DIN EN 54-7 bei den vom DIBt festgelegten Prüfbedingungen einhalten.

3.2.7 Verwendung verschiedener Brandmeldertypen (Mischinstallation)

Sollen bei der Ausführung der Feststellanlage verschiedene Brandmeldertypen gleichzeitig in einer Anlage verwendet werden können (Mischinstallation), ist dies für die entsprechenden Brandmelder nachzuweisen und in der Bauartgenehmigung anzugeben.

3.3 Auslösevorrichtung

3.3.1 Allgemeine Anforderungen

(1) Verhalten bei Alarmmeldungen und Störungen

Einwirkung Anforderung an das Verhalten der Auslösevorrichtung
lfd. Nr. Szenario Anzeige Auslöseverhalten
(Zeit vom Beginn der Einwirkung bis zur Auslösung der Feststellvorrichtung)
optisch akustisch 7
1 Alarmmeldungen
1 a Branddetektion durch zugehörigen BM ja nicht erforderlich unverzögert (innerhalb 10 s)
1b Alarmmeldung durch aufgeschaltete BMa (optional) ja nicht erforderlich
1c Betätigung des HATs ja nicht erforderlich
2 Störungen
2a Störung eines BMs, mindestens
  • Drahtbruch/Kurzschluss in den Zuleitungen eines BMs
  • fehlender BM
nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
2b Störung eines HATs, mindestens
  • Drahtbruch/Kurzschluss in den Zuleitungen des HATs
nicht erforderlich nicht erforderlich
2c Störung im Programmablauf (analog zu DIN EN 54-2, Abschnitt 13.4) nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
2d Ausfall der 1. Energieversorgung (öffentliches Stromnetz bzw. interne Energieversorgung) nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)

(2) Die Auslösevorrichtung muss das Auslösesignal für die Feststellvorrichtung über mindestens 3 s aufrechterhalten. 8

(3) Eine Auslösung durch die Brandmelder ist optisch (rotes Leuchtmittel) durch eine Leuchtdiode oder ein anderes Bauteil mit vergleichbarer Zuverlässigkeit anzuzeigen. Die optische Anzeige muss bei einer Umgebungsbeleuchtungsstärke bis 500 lx in einem Abstand von 6 m sichtbar sein.

(4) Unbeabsichtigt leitende Verbindungen 9 außerhalb von Gehäusen müssen wie eine Störung behandelt werden. Alternativ kann eine getrennte Leitungsführung oder eine Verlegung der Leitungen im Schutzrohr/Kabelkanal in der Zulassung vorgeschrieben werden.

(5) Auslösevorrichtungen unter Verwendung von BUS-Systemen, die brandschutz- und/oder sicherheitsrelevante Funktionen der Feststellanlage, die im Brandfall nicht abgeschaltet werden, umsetzen, müssen

(6) Die Wiederherstellung der Funktionsbereitschaft nach dem Ansprechen der Auslösevorrichtung muss einfach und ohne Spezialwerkzeug möglich sein.

(7) Eine automatische Wiederherstellung der Funktionsbereitschaft oder eine Fernrückstellung zur Wiederherstellung der Funktionsbereitschaft ist bei Feststellanlagen für Feuerschutzabschlüsse mit motorischer Öffnungshilfe nicht zulässig.

3.3.2 Auslösevorrichtungen in Brandmeldeanlagen

Die Auslösevorrichtung darf Bestandteil einer vorhandenen automatischen Brandmeldeanlage sein, wenn dies in der allgemeinen Bauartgenehmigung für die Feststellanlage so festgelegt ist und zusätzlich zu den Punkten (2) bis (7) des Abschnittes 3.3.1 folgende Bedingungen erfüllt sind:

Abweichend von Abschnitt 3.3.1 (1) gilt folgendes Verhalten bei Alarmmeldungen und Störungen:

Einwirkung Anforderung an das Verhalten der Auslösevorrichtung
lfd. Nr. Szenario Anzeige Auslöseverhalten
optisch akustisch 7
1 Alarmmeldungen
1 a Branddetektion durch zugehörigen BM ja nicht erforderlich gemäß DIN EN 54-2, Abschnitt 7.1
1b Alarmmeldung durch aufgeschaltete BMa (optional) ja nicht erforderlich
1 c Betätigung des HATs ja nicht erforderlich
2 Störungen
2a Störung eines BMs, mindestens
  • Drahtbruch/Kurzschluss in den Zuleitungen eines BMs
  • fehlender BM
nicht erforderlich nicht erforderlich gemäß DIN EN 54-2, Abschnitt 8.1
2b Störung eines HATs, mindestens
  • a Drahtbruch/Kurzschluss in den Zuleitungen des HATs
nicht erforderlich nicht erforderlich Auslösung unverzögert (innerhalb 10 s)
2c Störung im Programmablauf nicht erforderlich nicht erforderlich gemäß DIN EN 54-2, Abschnitt 13.4
2d Ausfall der 1. Energieversorgung (öffentliches Stromnetz bzw. in- terne Energieversorgung) nicht erforderlich nicht erforderlich gemäß DIN EN 54-4, Abschnitt 5.4

3.3.3 Auslösevorrichtungen für Feststellanlagen mit Sicherheitseinrichtungen für den Personenschutz

Die Anforderungen der Punkte (2) bis (7) des Abschnittes 3.3.1 sind ebenso zu erfüllen.

Abweichend von Abschnitt 3.3.1 gilt folgendes Verhalten bei Alarmmeldungen, Störungen und besonderen Situationen:

Einwirkung Anforderung an das Verhalten der Auslösevorrichtung
lfd. Nr. Szenario Anzeige Auslöseverhalten
(u.a. Zeit vom Beginn der Einwirkung bis zur Auslösung der Feststellvorrichtung)
optisch akustisch 7
1 Alarmmeldungen
1a Branddetektion durch zugehörigen BM ja nicht erforderlich unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für den PS
1b Alarmmeldung durch aufgeschaltete BMa (optional) ja nicht erforderlich
1c Betätigung des HATs ja nicht erforderlich
2 Störungen
2a Störung eines BMs
siehe Tabelle unter 3.3.1, 2a
nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für den PS
2b Störung eines HATs
siehe Tabelle unter 3.3.1, 2b
nicht erforderlich nicht erforderlich
2c Störung im Programmablauf (analog zu DIN EN 54-2, Abschnitt 13.4) nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für den PS
ja ja - keine Auslösung, wenn die Funktionen der FstA, die im Brandfall nicht abgeschaltet werden, auch weiterhin gewährleistet sind (Redundanz)

- Auslösung unter Berücksichtigung der SE für den PS, wenn auch der redundante Pfad ausfällt

2d Ausfall der 1. Energieversorgung (öffentliches Stromnetz bzw. interne Energieversorgung) nicht erforderlich nicht erforderlich - automatische unterbrechungsfreie Umschaltung auf die 2. Energieversorgung
(Bereitschaftsparallelbetrieb)

- Auslösen der FstV nach Erreichen der festgelegten Grenzspannung der 2. Energieversorgung unter Berücksichtigung der SE für den PS

2e Störung der 2. Energieversorgung
  • Drahtbruch/Kurzschluss in den Zuleitungen
  • Ausfall der Akkumulatoren
  • erhöhter Innenwiderstand der Akkus 10, (Prüfung alle 4 h)
  • Unterschreitung der festgelegten Grenzspannung
ja ja unverzögert (innerhalb 10 s) unter Berücksichtigung der SE für den PS
2f Störung der SE für den PS
  • Drahtbruch/Kurzschluss in den Zuleitungen
  • Störung der SE
  • dauerhafte Belegung des Schließbereiches (z.B. verstellte SE)
ja ja - keine Auslösung der FstV

- beizusätzlicher Auslösung durch Brandalarm oder HAT oder eine Störung der Fsta erfolgt der Schließvorgang ggf. ohne Berücksichtigung der SE für den PS

- bei Auftreten einer Störung der SE,nachdem die FstV ausgelöst wurde, wird der Schließvorgang fortgesetzt (ggf. ohne Berücksichtigung der SE für den PS)

3 Betätigung/Belegung der Sicherheitseinrichtung
3a Betätigung/Belegung der SE, nachdem die FstV ausgelöst wurde - der Schließvorgang darf unterbrochen werden können

- der Schließvorgang muss sich nach Freiwerden des Schließbereiches aus jeder Öffnungsstellung selbsttätig fortsetzen

3.3.4 Auslösevorrichtungen für Feststellanlagen für Feuerschutzabschlüsse im Zuge bahngebundener Förderanlagen (FAA)

Die Anforderungen der Punkte (2) bis (7) des Abschnittes 3.3.1 sind ebenso zu erfüllen. Abweichend von Abschnitt 3.3.1 gilt folgendes Verhalten bei Alarmmeldungen und Störungen:

Einwirkung Anforderung an das Verhalten der Auslösevorrichtung
lfd. Nr. Szenario Anzeige Auslöseverhalten
(u.a. Zeit vom Beginn der Einwirkung bis zur Auslösung der Feststellvorrichtung)
optisch akustisch 7
1 Alarmmeldungen
1a Branddetektion durch zugehörigen BM ja nicht erforderlich unverzögert (innerhalb 10 s)

unter Berücksichtigung der SE für die SBO

1b Alarmmeldung durch aufgeschaltete BMa (optional) ja nicht erforderlich
1c Betätigung des HATs ja nicht erforderlich
2 Störungen
2a Störung eines BMs
siehe Tabelle unter 3.3.1, 2a
nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für die SBO
2b Störung eines HATs
siehe Tabelle unter 3.3.1, 2b
nicht erforderlich nicht erforderlich
2c Störung im Programmablauf
(analog zu DIN EN 54-2, Abschnitt 13.4)
nicht erforderlich nicht erforderlich unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für die SBO
ja ja - keine Auslösung, wenn die Funktionen der FstA, die im Brandfall nicht abgeschaltet werden, auch weiterhin gewährleistet sind

- Auslösung unter Berücksichtigung der SE für die SBO, wenn auch der redundante Pfad ausfällt

2d Ausfall der 1. Energieversorgung (öffentliches Stromnetz bzw. interne Energieversorgung) nicht erforderlich nicht erforderlich - automatische unterbrechungsfreie Umschaltung auf die 2. Energieversorgung (Bereitschaftsparallelbetrieb)

- Auslösen der FstV nach Erreichen der festgelegten Grenzspannung der 2. Energieversorgung unter Berücksichtigung der SE für die SBO

2e Störung der 2. Energieversorgung
  • Drahtbruch/Kurzschluss in den Zuleitungen
  • Ausfall der Akkumulatoren
  • erhöhter Innenwiderstand der Akkus 10, (Prüfung alle 4 h)
  • Unterschreitung der festgelegten Grenzspannung
ja ja unverzögert (innerhalb 10 s)
unter Berücksichtigung der SE für die SBO
2f Störung der SE für die SBO an FAA
  • Drahtbruch/Kurzschluss in den Zuleitungen
  • Dauerhafte Belegung des Schließbereiches (z.B. verstellte SE)
ja ja - keine Auslösung der FstV

- bei zusätzlicher Auslösung durch Brandalarm oder HAT oder eine Störung der Fsta erfolgt der Schließvorgang ggf. ohne Berücksichtigung der SE für die SBO

- bei Auftreten einer Störung der SE, nachdem die FstV ausgelöst wurde, wird der Schließvorgang fortgesetzt (ggf. ohne Berücksichtigung der SE für die SBO)

3 Betätigung/Belegung der Sicherheitseinrichtung
3a Betätigung/Belegung der SE für die SBO, nachdem die FstV ausgelöst wurde - Unterbrechung des Schließvorganges und Zwangsschließung nach 120 s 11 ohne Berücksichtigung der SE für die SBO

3.4 Feststellvorrichtung

3.4.1 Feststellvorrichtungen für Drehflügeltüren

3.4.2 Feststellvorrichtungen für andere Abschlüsse als nach Abschnitt 3.4.1

Die Feststellvorrichtung muss den festgehaltenen Teil des Abschlusses sicher innerhalb von 3 s freigeben, nachdem die Auslösevorrichtung die Feststellvorrichtung ausgelöst hat.

Ein einmal eingeleiteter Schließvorgang des Abschlusses darf nur dann unterbrochen werden, wenn sich im Schließbereich Personen oder Gegenstände befinden (siehe Abschnitt 3.1.3 und 3.1.4). In diesem Fall muss - nach Freiwerden des Schließbereiches - die Feststellvorrichtung den Abschluss aus jeder Öffnungsstellung selbsttätig für die Fortsetzung des Schließvorganges freigeben können.

Die dauerhafte Funktionsfähigkeit der Feststellvorrichtung muss im Zusammenhang mit einer Dauerfunktionsprüfung nach DIN 4102-18 oder DIN EN 1191 bzw. DIN EN 12605 für einen geeigneten Abschluss über mindestens 10.000 Zyklen (Tore) bzw. 50.000 Zyklen (Türen) nachgewiesen werden. Wenn das Herausziehen des Abschlusses aus der Feststellung per Hand vorgesehen ist, so sind 50 % aller Zyklen in dieser Weise durchzuführen.

Werden Elektromagnete als Feststellvorrichtung verwendet, so müssen die folgenden Anforderungen bei Spannungsschwankungen von ±15 % vom Nennwert erfüllt werden:

(1) Es müssen geeignete Maßnahmen zur dauerhaften Überwindung der Remanenz getroffen werden.

(2) Die Strom- bzw. Leistungsaufnahme und die Gehäusetemperatur dürfen unter Dauerbeanspruchung bei Nennspannung +15 % nach Einstellung eines Beharrungszustandes 12 die vom Hersteller angegebenen Werte nicht überschreiten. Dazu ist der Verlauf der

aufzuzeichnen.

(3) Die Haltekraft bzw. das Haltemoment bei Nennspannung -15 % muss größer oder gleich
der/des vom Hersteller angegebenen Nennhaltekraft/Nennhaltemomentes sein. Die minimalen und maximalen Haltekräfte/Haltemomente sind anzugeben.

3.5 Energieversorgung

3.5.1 Allgemeine Anforderungen

(1) Die Energieversorgungen müssen folgende Anforderungen der DIN EN 54-4 erfüllen:

(2) In der Installationsanleitung der Feststellanlage muss die höchstmögliche Anschlusslast angegeben werden.

(3) Zusätzlich muss die Energieversorgung bei Abweichungen der Eingangsspannung von +10 % bis -15 % (230 V Wechselspannung) folgende Bedingungen erfüllen:

(4) Der ordnungsgemäße Betrieb ist durch eine grüne Leuchtdiode oder ein anderes Bauteil mit vergleichbarer Zuverlässigkeit anzuzeigen.

3.5.2 Energieversorgung ohne Batterien (Netzanschlussbetrieb)

Bei Ausfall des Stromversorgungsnetzes wird die gesamte Feststellanlage spannungslos; die angeschlossenen Feststellvorrichtungen müssen die Abschlüsse freigeben.

3.5.3 Energieversorgung mit wieder aufladbaren Batterien als zweite Energiequelle (Bereitschaftsparallelbetrieb)

(1) In Fällen, in denen eine Verzögerung oder Unterbrechung des Schließvorganges vorgesehen ist (siehe Abschnitt 3.1.2 bis 3.1.4), muss die Energieversorgung für die Feststellanlage mit einer zweiten Energiequelle durch wartungsfreie Bleibatterien, die die Anforderungen der Richtlinie VdS 2102 erfüllen (Zertifikat einer im Zulassungsverfahren für Feststellanlagen benannten Prüfstelle), ausgerüstet werden. Bei Ausfall der 1. Energieversorgung (öffentliches Stromversorgungsnetz) muss eine automatische Umschaltung auf die 2. Energieversorgung (wieder aufladbare Batterien) erfolgen (Bereitschaftsparallelbetrieb).

(2) Die gesamte Energieversorgung muss die Anforderungen der DIN EN 54-4 (ausgenommen die Abschnitte 9.4 bis 9.15) erfüllen.

(3) Die Ausgangsspannungen müssen den Kriterien des Abschnittes 3.5.1 entsprechen, um die verschiedenen Komponenten der Feststellanlage jederzeit innerhalb ihrer Versorgungsparameter betreiben zu können.

(4) Für die Ermittlung der notwendigen Kapazität der wiederaufladbaren Batterien ist durch den Antragsteller eine entsprechende Energiebilanz zu erstellen und der Prüfstelle vorzulegen. Dabei ist die Kapazität der Batterie bei den Umgebungsbedingungen entsprechend Klasse 3k5 gemäß DIN EN 60721-3-3 zu berücksichtigen.

(5) Die ermittelte Kapazität muss bei Maximalausbau der Feststellanlage das kontrollierte Schließen des Abschlusses sicherstellen.

(6) Die Energiebilanz ist so auszulegen, dass die Auslösung der Feststellvorrichtung spätestens dann erfolgt, wenn die zu diesem Zeitpunkt noch vorhandene Batteriekapazität dazu ausreicht eine Verzögerung oder Unterbrechung des Schließvorganges für mindestens 30 Minuten zu gewährleisten (Unterschreitung der durch den Hersteller festgelegten Grenzspannung).

(7) Bis zum Zeitpunkt der Abschaltung aufgrund des Erreichens der Entladeschlussspannung sind alle benötigten Komponenten der Feststellanlage innerhalb ihrer Versorgungsparameter zu betreiben.

Hinweis:

Eine ggf. vorhandene Freiräumeinrichtung gehört in der Regel nicht zur Feststellanlage und wird daher nicht über deren wiederaufladbare Batterien mit Energie versorgt. Eine Ausnahme bilden ggf. solche Freiräumeinrichtungen, die über die Bauartgenehmigung der Feststellanlage mit beurteilt werden. In diesem Fall ist die Funktion der Freiräumeinrichtung im Rahmen der Nachweisprüfungen zu überprüfen und der Energiebedarf bei der Erstellung der Energiebilanz zu berücksichtigen. Derartige Freiräumeinrichtungen sind im Rahmen einer Dauerfunktionsprüfung für einen Förderanlagenabschluss mit gleicher Zyklenzahl zu prüfen.

3.5.4 Kennzeichnung der Energieversorgung

Die Energieversorgung muss wie folgt gekennzeichnet sein:

Die Kennzeichnung muss auf dem Gehäuse erfolgen und dauerhaft gut lesbar sein.

3.6 Handauslösetaster

3.6.1 Allgemeines

(1) Die Abmessungen des Gehäuses des Handauslösetasters müssen mindestens B x H = 40 mm x 40 mm betragen. Das Betätigungsfeld muss mindestens einen Durchmesser von 15 mm bzw. eine Fläche von B x H = 15 mm x 15 mm aufweisen.

Das Betätigungsfeld des Handauslösetasters muss rot sein. Sein Gehäuse muss die Aufschrift tragen: "Tür schließen". Für "Tür" darf auch eine genauere Bezeichnung (z.B. Rolltor) gewählt werden. Die Beschriftung muss gut lesbar sein.

(2) Durch eine kurze Betätigung dieses Tasters (maximal 500 ms) muss der Schließvorgang automatisch eingeleitet werden.

(3) Die Verwendung von Tastern nach DIN EN 54-11 ist nicht zulässig.

3.6.2 Folientaster

(1) Bei Handauslösetastern als Folientaster muss auf der Folie ein vom Untergrund farblich abgehobener Bereich (40 mm x 40 mm) für die Handauslösung markiert werden. Innerhalb dieses Bereiches muss das (aktive) Betätigungsfeld (Durchmesser von 15 mm bzw. eine Fläche von 15 mm x 15 mm) als vollständig begrenzte und deutlich abgehobene rote Fläche angeordnet sein.

Auf das (aktive) Betätigungsfeld ist durch Symbole aufmerksam zu machen (siehe Bild 1).

Bild 1: Beispiele für die Gestaltung von Handauslösetastern als Folientaster

Die Beschriftung muss in dem für die Handauslösung markierten Feld, aber nicht zwingend innerhalb des (aktiven) Betätigungsfeldes und nicht über die Begrenzung des (aktiven) Betätigungsfeldes hinaus angeordnet werden. Das Aufbringen von zusätzlichen Symbolen (Flammen) sollte im Sinne der Übersichtlichkeit unterlassen werden.

(2) Die Betätigungskräfte sind wie folgt zu begrenzen:

(3) Die Mindestanzahl der notwendigen Druckpunkte auf dem aktiven Betätigungsfeld beträgt:

3.7 Sicherheitseinrichtungen

3.7.1 Sicherheitseinrichtungen für den Personenschutz an Abschlüssen nach Abschnitt 2.7.1

Bei der Ausführung des Abschlusses, der mit der Feststellanlage ausgerüstet werden soll, sind die Anforderungen der geltenden Unfallverhütungsvorschriften zu berücksichtigen. Außerdem gilt Folgendes:

(1) Die Sicherheitseinrichtungen müssen im Fall eines Brandalarmes, einer Störung oder einer Handauslösung den eingeleiteten Schließvorgang unterbrechen, wenn sich Personen oder Gegenstände im Schließbereich des Abschlusses befinden.

(2) Die Sicherheitseinrichtungen und die zugehörigen Zuleitungen müssen auf Störungen überwacht werden. Diese Störungen dürfen nicht dazu führen, dass die Auslösung der Feststellung behindert wird.

(3) Werden zur Unterbrechung des Schließvorgangs optische Sensoren (z.B. Lichtschranken) verwendet, so müssen diese Sensoren bei Schwankungen der Versorgungsparameter so un-empfindlich gegen Rauch sein, dass sie bei einem Erprobungstest in Anlehnung an DIN EN 54-12 bei keinem der Prüfbrände TF2 bis TF5 klassifiziert werden.

3.7.2 Sicherheitseinrichtungen für die Schließbereichsüberwachung bei Feuerschutzabschlüssen im Zuge bahngebundener Förderanlagen nach Abschnitt 2.7.2

(1) Die Sicherheitseinrichtungen müssen im Fall eines Brandalarmes, einer Störung oder einer Handauslösung das Einleiten eines Schließvorganges verzögern oder den eingeleiteten Schließvorgang unterbrechen, wenn sich Gegenstände im Schließbereich des Abschlusses befinden.

(2) Die Zuleitungen der Sicherheitseinrichtungen müssen auf Drahtbruch und Kurzschluss überwacht werden. Diese Störungen dürfen nicht dazu führen, dass die Auslösung der Feststellung behindert wird.

(3) Werden zur Unterbrechung des Schließvorgangs optische Sensoren (z.B. Lichtschranken) verwendet, so müssen diese Sensoren bei Schwankungen der Versorgungsparameter so unempfindlich gegen Rauch sein, dass sie bei einem Erprobungstest gemäß DIN EN 54-12 bei keinem der Prüfbrände TF2 bis TF5 klassifiziert werden.

4 Zitierte Normen, Verordnungen und Richtlinien

DIN EN 54-2 Brandmeldeanlagen; Teil 2: Brandmelderzentralen
DIN EN 54-4 Brandmeldeanlagen; Teil 4: Energieversorgungseinrichtungen
DIN EN 54-5 Brandmeldeanlagen; Teil 5: Wärmemelder - Punktförmige Melder
DIN EN 54-7 Brandmeldeanlagen; Teil 7: Rauchmelder - Punktförmige Melder nach dem Streulicht-, Durchlicht- oder Ionisationsprinzip
DIN EN 54-11 Brandmeldeanlagen; Teil 11: Handfeuermelder
DIN EN 54-12 Brandmeldeanlagen; Teil 12: Rauchmelder - Linienförmige Melder nach dem Durchlichtprinzip
DIN EN 54-20 Brandmeldeanlagen; Teil 20: Ansaugrauchmelder
DIN EN 54-25 Brandmeldeanlagen; Teil 25: Bestandteile, die Hochfrequenz-Verbindungen nutzen
DIN EN 1155 Schlösser und Baubeschläge - Elektrisch betriebene Feststellvorrichtungen für Drehflügeltüren - Anforderungen und Prüfverfahren
DIN EN 1158 Schlösser und Baubeschläge - Schließfolgeregler - Anforderungen und Prüfverfahren
DIN EN 1191 Fenster und Türen - Dauerfunktionsprüfung - Prüfverfahren
DIN EN 1634-1 Feuerwiderstandsprüfungen und Rauchschutzprüfungen für Türen, Tore, Abschlüsse, Fenster und Baubeschläge; Teil 1: Feuerwiderstandsprüfungen für Türen, Tore, Abschlüsse und Fenster
DIN 4102-5 Brandverhalten von Baustoffen und Bauteilen; Teil 5: Feuerschutzabschlüsse, Abschlüsse in Fahrschachtwänden und gegen feuerwiderstandsfähige Verglasungen, Begriffe, Anforderungen und Prüfungen
DIN 4102-18 Brandverhalten von Baustoffen und Bauteilen; Teil 18: Feuerschutzabschlüsse - Nachweis der Eigenschaft "selbstschließend" (Dauerfunktionsprüfung)
DIN EN 12605 Tore - Mechanische Aspekte - Prüfverfahren
DIN EN 12978 Türen und Tore - Schutzeinrichtungen für kraftbetätigte Türen und Tore - Anforderungen und Prüfverfahren
DIN 18263-4 Schlösser und Baubeschläge - Türschließer mit hydraulischer Dämpfung; Teil 4: Türschließer mit Öffnungsautomatik (Drehflügelantrieb)
DIN EN 60335-1 Sicherheit elektrischer Geräte für den Hausgebrauch und ähnliche Zwecke; Teil 1: Allgemeine Anforderungen
DIN EN 60529 Schutzarten durch Gehäuse (IP-Code)
DIN EN 60721-3-3 Klassifizierung von Umweltbedingungen; Teil 3: Klassen von Umwelteinflussgrößen und deren Grenzwerte, Hauptabschnitt 3: ortsfester Einsatz, wetter-geschützt
DIN EN 60950-1 Einrichtungen der Informationstechnik - Sicherheit; Teil 1: Allgemeine Anforderungen
DIN EN 61000-3-2 Elektromagnetische Verträglichkeit (EMV); Teil 3-2: Grenzwerte - Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom d 16 a je Leiter)
DIN EN 61000-3-3 Elektromagnetische Verträglichkeit (EMV); Teil 3-3: Grenzwerte - Begrenzung von Spannungsänderungen, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs-Versorgungsnetzen für Geräte mit einem Bemessungsstrom !9 16 a je Leiter, die keiner Sonderanschlussbedingung unterliegen
DIN EN 61000-6-2 Elektromagnetische Verträglichkeit (EMV); Teil 6-2: Fachgrundnormen - Störfestigkeit für Industriebereiche
DIN EN 61000-6-3 Elektromagnetische Verträglichkeit (EMV); Teil 6-3: Fachgrundnormen - Störaussendung für Wohnbereich, Geschäfts- und Gewerbebereiche sowie Kleinbetriebe
DIN EN VDE 61032 Schutz von Personen und Ausrüstung durch Gehäuse
VdS 2102 Richtlinien für Gefahrenmeldeanlagen - Wartungsfreie Blei-Batterien - Anforderungen und Prüfmethoden
305/2011 /EU Verordnung (EU) Nr. 305/2011 zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten und zur Aufhebung der Richtlinie 89/106/EWG des Rates
2004/108/EG Richtlinie 2004/108/EG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit ( EMV-Richtlinie)

In Deutschland umgesetzt durch das Gesetz über die elektromagnetische Verträglichkeit von Geräten ( EMVG).

2006/95/EG Richtlinie 2006/95/EG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten betreffend elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen ( Niederspannungsrichtlinie)

In Deutschland umgesetzt durch das Produktsicherheitsgesetz ( ProdSG) und die 1. Verordnung zum Produktsicherheitsgesetz (Verordnung über die Bereitstellung elektrischer Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen - 1. ProdSV).

2014/53/EU Richtlinie 2014/53/EU über die Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Funkanlagen auf dem Markt und zur Aufhebung der Richtlinie 1999/5/EG

_____
1) nach Landesrecht

2) Auf den Handauslösetaster kann unter bestimmten Bedingungen verzichtet werden (s. entsprechende Zulassungsbescheide).

3) Teile einer automatischen Brandmeldeanlage können als Auslösevorrichtung im Rahmen einer Feststellanlage dienen.

4) Erfolgt das selbsttätige Schließen eines Feuerschutzabschlusses anders als mit mechanischer Energie, so ist mit dem DIBt die jeweilige Nachweisführung abzustimmen.

5) Für den Fall, dass die angegebenen zulässigen Umgebungslufttemperaturen außerhalb des Bereiches "normaler Umgebungsbedingungen" (+5°C ≤ t ≤ +40°C) liegen, ist vom Hersteller das verwendete Nachweisverfahren anzugeben.

6) Abweichungen von dieser Zwangsschließzeit können im Einzelfall mit der zuständigen Bauaufsichtsbehörde vereinbart werden.

7) Eine akustische Anzeige während des Schließens des Abschlusses kann aufgrund anderer Vorschriften erforderlich sein.

8) Für technische Lösungen, bei denen das Auslösesignal nicht über mindestens 3 s aufrecht gehalten werden kann, muss auf andere Weise nachgewiesen werden, dass eine maximale Betätigungszeit des Handauslösetasters von 500 ms ausreicht, um alle in der Bauartgenehmigung aufgeführten Feststellvorrichtungen sicher auszulösen.

9) Als unbeabsichtigt leitende Verbindungen gelten hier Verbindungen zwischen den Leitungen eines geschlossenen Öffnerkontaktes (keine elektrische Potentialdifferenz) mit der Folge, dass ein Öffnen des Öffnerkontaktes wirkungslos ist.

10) Prüfverfahren nach Anhang A, DIN EN 54-4:2006

11) Zur Zwangsschließzeit eines Abschlusses siehe Abschnitt 3.1.4

12) Ob bzw. wann ein Beharrungszustand erreicht ist, entscheidet die Zulassungsprüfstelle. Die Entscheidung ist zu begründen und im Prüfbericht zu dokumentieren.

13) Ein Muster für eine Herstellererklärung ist unter www.dibt.de abrufbar.

.

Anforderungen an bauliche Anlagen bezüglich des Gesundheitsschutzes (ABG)
Stand: Mai 2017
Anhang 8

1 Gegenstand und Geltungsbereich

In diesem Dokument werden die allgemeinen Anforderungen an bauliche Anlagen hinsichtlich des Gesundheitsschutzes konkretisiert. Die Luftqualität in Innenräumen spielt dabei eine wesentliche Rolle für die Gesundheit und das Wohlbefinden des Menschen. In zahlreichen wissenschaftlichen Studien ist mittlerweile belegt, dass die Ausbildung von Atemwegserkrankungen, Entzündungsreaktionen und Reizschädigungen am Atemtrakt und den Augen, systemische Schädigungen, Sensibilisierungen/Allergien sowie eine Reihe unspezifischer Symptome (Unwohlsein, Kopfschmerzen, Übelkeit, zentralnervöse Störungen, Schwindel usw.) in direktem Zusammenhang mit der Innenraumluftqualität und Luftverunreinigungen stehen. Unter den gesundheitsschädigenden Wirkungen erfordern karzinogene, mutagene und reproduktionstoxische Auswirkungen eine besondere Beachtung.

Die Gesundheits- und Hygieneanforderungen an bauliche Anlagen leiten sich aus den gesundheitsrelevanten Eigenschaften der verwendeten Bauteile, Bausätze und Baustoffe ab. Diese können in entscheidendem Maß durch Emissionen zu den Raumluftverunreinigungen beitragen und erhebliche Auswirkungen auf die Gesundheit verursachen. Sie müssen daher im Hinblick auf den Gesundheitsschutz Anforderungen an Inhaltsstoffe und an die Freisetzung schädlicher Stoffe erfüllen. Dazu gehören potentielle Emissionen flüchtiger anorganischer und organischer Verbindungen ebenso wie von Partikeln. Zu berücksichtigen sind sowohl bauliche Anlagen, Bauteile und Baustoffe mit direktem als auch indirektem Kontakt zum Innenraum, das heißt auch solche Produkte, die zwar mit anderen Produkten verkleidet oder abgedeckt, aber nicht diffusionsdicht abgeschottet sind. Auch der Gehalt nicht oder wenig flüchtiger chemischer Stoffe ist für die gesundheitliche Bewertung von Bedeutung, da diese z.B. durch das Bearbeiten der Produkte auch in partikel- oder staubgebundener Form freigesetzt und für den menschlichen Körper verfügbar gemacht oder durch direkten Hautkontakt aufgenommen werden können.

2 Anforderungen

2.1 Anforderungen an bauliche Anlagen

2.2. Besondere Anforderungen an Aufenthaltsräume und baulich nicht davon abgetrennte Räume

Da sich in solchen Räumen auch Risikogruppen, wie Kinder, alte Menschen, Schwangere oder (chronisch) kranke Menschen aufhalten können und die gesundheitliche Gefährdung durch einen Stoff von der Exposition, d.h. der Art und Dauer der Aufnahme eines Stoffes abhängt, sind an solche Räume neben den allgemeinen Anforderungen an bauliche Anlagen besondere Anforderungen hinsichtlich der Freisetzung gefährlicher Stoffe zu stellen. Die besonderen Anforderungen an Aufenthaltsräume und baulich nicht davon abgetrennte Räume werden in Anlage 3 konkretisiert.

Der Einsatz von Stoffen, die nach der CLP-Verordnung (EG) Nr. 1272/2008 in der jeweils aktuell geltenden Fassung als Acute Tox. 1, 2 oder 3, Repr 1 a oder 1 B sowie STOT SE 1 oder STOT RE 1 klassifiziert werden, ist nur zulässig, wenn sichergestellt ist, dass eine gesundheitsgefährdende Exposition der Gebäudenutzer ausgeschlossen wird.

Die Verwendung von Holzschutzmitteln ist unzulässig, es sei denn es liegt eine Zulassung gemäß der Biozid-Verordnung (EU) Nr. 528/2012 vor.

2.2.1 Anforderungen an Emissionen

Im Folgenden sind die Anforderungen im Hinblick auf die Emissionen flüchtiger organischer Verbindungen sowie von Ammoniak und Nitrosaminen beschrieben.

Generell gilt, dass keine kanzerogenen, mutagenen oder reproduktionstoxischen Stoffe der EU-Kategorie 1 a und 1 B nach der CLP-Verordnung (EG) Nr. 1272/2008 in Aufenthaltsräume emittiert werden sollen.

2.2.1.1 Anforderungen an VOC-Emissionen

Die Emission flüchtiger organischer Verbindungen wird anhand von Prüfkammertests nach der DIN EN 16516:2018-01 bestimmt.

Als Zielverbindungen (target compounds) sind die in der NIK-Liste in Anlage 2 dieses Dokumentes aufgeführten Substanzen heranzuziehen.

Die zu bestimmenden Parameter sind wie folgt definiert:

Folgende Anforderungen gelten für VOC-Emissionen:

2.2.1.2 Anforderungen an Ammoniak-Emissionen

Die Ermittlung der Ammoniak-Emissionen erfolgt entsprechend den gleichen Bedingungen wie in der VOC-Emissionsprüfung (Prüfkammer und Kammerbedingungen nach DIN EN 16516:2018-01).

Die Anforderungen sind erfüllt, wenn in der Emissionsprüfung nach 28 Tagen ein Ammoniak-Wert von ≤ 0,1 mg/m3 eingehalten wird.

2.2.1.3 Anforderungen an Nitrosamin-Emissionen

Die Ermittlung von Nitrosamin-Emissionen erfolgt in Anlehnung an die BGI-Vorschrift (Berufsgenossenschaftliche Information für Sicherheit und Gesundheit bei der Arbeit).

BGI 505-23 ist ein von den Berufsgenossenschaften anerkanntes Analyseverfahren zur Feststellung der Konzentration krebserzeugender Arbeitsstoffe in der Luft in Arbeitsbereichen (Verfahren zur Bestimmung von N-Nitrosaminen).

Die Anforderungen sind erfüllt, wenn in der Emissionsprüfung nach 28 Tagen ein Nitrosamin-Wert von ≤ 0,2 µg/m3 eingehalten ist.

2.2.2 Anforderungen an den Gehalt von PAK, Nitrosaminen und PCP

Im Folgenden sind die Anforderungen im Hinblick auf den Gehalt von PAK, Nitrosaminen und PCP für Bauprodukte beschrieben, die solche Stoffe enthalten oder freisetzen können. Es ist produktspezifisch festzulegen, welche Parameter jeweils relevant sind.

2.2.2.1 PAK

Der analytische Nachweis der PAK erfolgt in Anlehnung an die Methode des AfPS GS 2014:01 PAK unter Verwendung eines internen Standards. Die Anforderungen sind erfüllt, wenn der Gehalt an BaP als Leitsubstanz 5 mg/kg und für 16 PAK nach EPa (Environmental Protection Agency) 50 mg/kg nicht überschreitet. Für verbrauchernahe Verwendungen sind die Anforderungen entsprechend der REACH-Verordnung einzuhalten.

2.2.2.2 Nitrosamine

Der analytische Nachweis der Nitrosamine (gem. TRGS 552) erfolgt nach einer Methode des DIK (Deutsches Institut für Kautschuktechnologie e.V.), veröffentlicht in "Kautschuk Gummi Kunststoffe, Nr. 6/91, pp. 514-521). Die Anforderungen sind erfüllt, wenn der Gehalt an Nitrosaminen 11 µg/kg nicht überschreitet.

2.2.2.3 PCP

Der analytische Nachweis für PCP erfolgt nach CEN/TR 14823. Die Anforderungen sind erfüllt, wenn der Gehalt an PCP 5 mg/kg nicht überschreitet.

2.2.3 Anforderungen an den Gehalt und die Freisetzung weiterer Stoffe

Je nach Produktgruppe kann der Gehalt oder die Freisetzung weiterer Stoffe gesundheitlich relevant sein und sich aus der chemischen Zusammensetzung der Produkte ableiten. In diesen Fällen ist auszuschließen, dass durch die Verwendung solcher Stoffe eine schädliche Wirkung auf die Gesundheit des Menschen entsteht.

.

Normenverzeichnis Anlage 1


DIN EN ISO 16000-9:2008-04 Innenraumluftverunreinigungen - Teil 9: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Emissionsprüfkammer-Verfahren (ISO 16000-9:2006); Deutsche Fassung EN ISO 16000-9:2006
DIN EN ISO 16000-11:2006-06 Innenraumluftverunreinigungen - Teil 11: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Probenahme, Lagerung der Proben und Vorbereitung der Prüfstücke (ISO 16000-11:2006)
DIN EN 16516:2018-01 Bauprodukte - Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft (CEN/TS 16516:2013)

.

NIK-Werte (target compounds) Anlage 2

Die bauaufsichtlich geltenden NIK-Werte werden vom DIBt regelmäßig in aktualisierter Fassung auf der Internetseite des DIBt veröffentlicht und sind in Tabelle 1 abgedruckt. Die jeweilige Fassung gilt ab dem Datum ihrer Bekanntmachung. Die hiermit ersetzte vorherige Fassung gilt ab diesem Datum noch ein Jahr weiter. Alte und neue Fassungen sind jedoch jeweils in sich vollständig zu verwenden, sie dürfen nicht kombiniert werden.

Tabelle 1: NIK-Werte-Liste 2015

1) Substanz CAS-Nr. NIK [µg/m3] Bemerkungen
1 Aromatische Kohlenwasserstoffe
1-1* Toluol 108-88-3 2.900 Übernahme EU-LCI-Wert
1-2* Ethylbenzol 100-41-4 850 Übernahme EU-LCI-Wert
1-3* Xylol, Gemisch aus den Isomeren o-, m- und p-Xylol 1330-20-7 500 Übernahme EU-LCI-Wert
1-4* p-Xylol 106-42-3 500 Übernahme EU-LCI-Wert
1-5* m-Xylol 108-38-3 500 Übernahme EU-LCI-Wert
1-6* o-Xylol 95-47-6 500 Übernahme EU-LCI-Wert
1-7* Isopropylbenzol 98-82-8 500 MAK: 50.000 µg/m3
1-8* n-Propylbenzol 103-65-1 950 Übernahme EU-LCI-Wert
1-9 1-Propenylbenzol (ß-Methylstyrol) 637-50-3 2.400 Read across von ±-Methylstyrol
1-10* 1,3,5-Trimethylbenzol 108-67-8 450 Übernahme EU-LCI-Wert
1-11* 1,2,4-Trimethylbenzol 95-63-6 450 Übernahme EU-LCI-Wert
1-12* 1,2,3-Trimethylbenzol 526-73-8 450 Übernahme EU-LCI-Wert
1-13* 2-Ethyltoluol 611-14-3 550 Übernahme EU-LCI-Wert
1-14* 1 -Isopropyl-2-methylbenzol (o-Cymol) 527-84-4 1.000 Übernahme EU-LCI-Wert
1-15* 1 -Isopropyl-3-methylbenzol (m-Cymol) 535-77-3 1.000 Übernahme EU-LCI-Wert
1-16* 1 -Isopropyl-4-methylbenzol (p-Cymol) 99-87-6 1.000 Übernahme EU-LCI-Wert
1-17* 1,2,4,5-Tetramethylbenzol 95-93-2 500 Übernahme EU-LCI-Wert
1-18* n-Butylbenzol 104-51-8 1.100 Übernahme EU-LCI-Wert
1-19* 1,3-Diisopropylbenzol 99-62-7 750 Übernahme EU-LCI-Wert
1-20* 1,4-Diisopropylbenzol 100-18-5 750 Übernahme EU-LCI-Wert
1-21 * Phenyloctan und Isomere 2189-60-8 1.100 Übernahme EU-LCI-Wert
1-22* 1-Phenyldecan und Isomere 104-72-3 1.100 Read across von Ethylbenzol
1-23* 1-Phenylundecan und Isomere 6742-54-7 1.100 Read across von Ethylbenzol
1-24* 4-Phenylcyclohexen (4-PCH) 4994-16-5 300 Read across von Styrol
1-25* Styrol 100-42-5 250 Übernahme EU-LCI-Wert
1-26* Phenylacetylen 536-74-3 200 Read across von Styrol
1-27 2-Phenylpropen (±-Methylstyrol) 98-83-9 2.500 EU-OEL: 246.000 µg/m3
1-28 Vinyltoluol (alle Isomeren: o-, m-, p-Methylstyrole) 25013-15-4 4.900 AGW: 490.000 µg/m3
1-29* andere Alkylbenzole, sofern Einzelisomere nicht anders zu bewerten sind 450 Read across von Trimethylbenzol
1-30 Naphthalin 91-20-3 5 AGW: 500 µg/m3
1-31* Inden 95-13-6 450 Übernahme EU-LCI-Wert
2 Aliphatische Kohlenwasserstoffe (n-, iso- und cyclo-)
2-1 3-Methylpentan 96-14-0 VVOC
2-2 n-Hexan 110-54-3 72 EU-OEL: 72.000 µg/m3
2-3* Cyclohexan 110-82-7 6.000 Übernahme EU-LCI-Wert
2-4* Methylcyclohexan 108-87-2 8.100 Übernahme EU-LCI-Wert
2-5 - 1)
2-6 - 1)
2-7 - 1)
2-8 n-Heptan 142-82-5 21.000 EU-OEL: 2.085.000 µg/m3
2-9 andere gesättigte aliphatische Kohlenwasserstoffe C6 bis C8 15.000 AGW: 1.500.000 µg/m3
2-10* andere gesättigte aliphatische Kohlenwasserstoffe C9 bis C16 6.000 Übernahme EU-LCI-Wert
2-1 1* andere gesättigte aliphatische Kohlenwasserstoffe C17 bis C22 1.000 SVOC Einzelstoffbetrachtung
3 Terpene
3-1* 3-Caren 498-15-7 1.500 Übernahme EU-LCI-Wert
3-2* a-Pinen 80-56-8 2.500 Übernahme EU-LCI-Wert
3-3* ß-Pinen 127-91-3 1.400 Übernahme EU-LCI-Wert
3-4* Limonen 138-86-3 5.000 Übernahme EU-LCI-Wert
3-5* Terpene, sonstige 1.400 Übernahme EU-LCI-Wert (zur Gruppe gehören alle Monoterpene und Sesquiterpene und deren Sauerstoffderivate)
4* Aliphatische mono-Alkohole (n-, iso- und cyclo-) und Dialkohole
4-1 Ethanol 64-17-5 VVOC
4-2 1-Propanol 71-23-8 VVOC
4-3 2-Propanol 67-63-0 VVOC
4-4* tert-Butanol, 2-Methyl-2-propanol 75-65-0 620 Übernahme EU-LCI-Wert
4-5 2-Methyl-1-propanol 78-83-1 3.100 AGW: 310.000 µg/m3
4-6* 1-Butanol 71-36-3 3.000 Übernahme EU-LCI-Wert
4-7* Pentanol (alle Isomere) 71-41-0
30899-19-5
94624-12-1
6032-29-7
584-02-1
137-32-6
123-51-3
598-75-4
75-85-4
75-84-3
730 Übernahme EU-LCI-Wert
4-8* 1-Hexanol 111-27-3 2.100 Übernahme EU-LCI-Wert
4-9* Cyclohexanol 108-93-0 2.000 Übernahme EU-LCI-Wert
4-10* 2-Ethyl-1-hexanol 104-76-7 300 Übernahme EU-LCI-Wert
4-11 1-Octanol 111-87-5 500 Einzelstoffbetrachtung
4-12* 4-Hydroxy-4-methyl-pentan-2-on (Diacetonalkohol) 123-42-2 960 Übernahme EU-LCI-Wert
4-13 andere C4-C10 gesättigte n- und iso-Alkohole 500 Read across von 1-Octanol, ausgenommen sind die cyclischen Verbindungen
4-14 andere C1 1 -C1 3 gesättigte n- und iso-Alkohole 500 Read across von 1-Octanol, ausgenommen sind die cyclischen Verbindungen
4-15* 1,4-Cyclohexandimethanol 105-08-8 1.600 Einzelstoffbetrachtung
5 Aromatische Alkohole (Phenole)
5-1 Phenol 108-95-2 10 Einzelstoffbetrachtung
5-2* BHT (2,6-di-tert-butyl-4-methyl-phenol) 128-37-0 100 Übernahme EU-LCI-Wert
5-3* Benzylalkohol 100-51-6 440 Übernahme EU-LCI-Wert
6 Glykole, Glykolether, Glykolester
6-1 Propylenglykol (1,2-Dihydroxypropan) 57-55-6 2.500 Einzelstoffbetrachtung
6-2 Ethylenglykol (Ethandiol) 107-21-1 260 AGW: 26.000 µg/m3
6-3* Ethylenglykolmonobutylether 111-76-2 1.100 Übernahme EU-LCI-Wert
6-4* Diethylenglykol 111-46-6 440 Übernahme EU-LCI-Wert
6-5* Diethylenglykolmonobutylether 112-34-5 670 Übernahme EU-LCI-Wert
6-6* 2-Phenoxyethanol 122-99-6 1.100 Übernahme EU-LCI-Wert
6-7 Ethylencarbonat 96-49-1 370 Read across von Ethylenglykol
6-8 1-Methoxy-2-propanol 107-98-2 3.700 AGW: 370.000 µg/m3
6-9* 2,2,4-Trimethyl-1,3-pentandiolmonoisobutyrat 25265-77-4 600 Übernahme EU-LCI-Wert
6-10 Glykolsäurebutylester (Hydroxyessigsäurebutylester) 7397-62-8 550 Read across von Ethylenglykol
6-11* Butyldiglykolacetat (Ethanol, 2-(2-butoxyethoxy)acetat, BDGA) 124-17-4 850 Übernahme EU-LCI-Wert
6-12* Dipropylenglykolmonomethylether 34590-94-8 3.100 Übernahme EU-LCI-Wert
6-13 2-Methoxyethanol 109-86-4 3# EU-OEL: 3.110 µg/m3
6-14 2-Ethoxyethanol 110-80-5 8 EU-OEL: 8.000 µg/m3
6-15* 2-Propoxyethanol 2807-30-9 860 Übernahme EU-LCI-Wert
6-16* 2-Methylethoxyethanol 109-59-1 220 Übernahme EU-LCI-Wert
6-17* 2-Hexoxyethanol 112-25-4 1.400 Read across von Ethylenglykol-monobutylether
6-18 1,2-Dimethoxyethan 110-71-4 4# Read across von 2-Methoxy-ethanol
6-19 1,2-Diethoxyethan 629-14-1 10 Read across von 2-Ethoxyethanol
6-20 2-Methoxyethylacetat 110-49-6 5 AGW: 4.900 µg/m3
6-21 2-Ethoxyethylacetat 111-15-9 11 EU-OEL: 11.000 µg/m3
6-22 2-Butoxyethylacetat 112-07-2 1.300 AGW: 130.000 µg/m3
6-23 2-(2-Hexoxyethoxy)-ethanol 112-59-4 740 Read across von Diethylenglykolmonobutylether
6-24* 1 -Methoxy-2-(2-methoxyethoxy)-ethan 111-96-6 28 Übernahme EU-LCI-Wert
6-25* 2-Methoxy-1-propanol 1589-47-5 19 Übernahme EU-LCI-Wert
6-26* 2-Methoxy-1-propylacetat 70657-70-4 28 Übernahme EU-LCI-Wert
6-27 Propylenglykoldiacetat 623-84-7 5.300 Read across von Propylenglykol
6-28* Dipropylenglykol 110-98-5
25265-71-8
670 Übernahme EU-LCI-Wert
6-29 Dipropylenglykol-monomethyletheracetat 88917-22-0 3.900 Read across von Dipropylenglykolmonomethylether
6-30 Dipropylenglykolmono-n-propylether 29911-27-1 740 Read across von Dipropylenglykolmonomethylether
6-31 Dipropylenglykolmono-n-butylether 29911-28-2
35884-42-5
810 Read across von Dipropylenglykolmonomethylether
6-32 Dipropylenglykolmono-t-butylether 132739-31-2
(Gemisch)
810 Read across von Dipropylenglykolmonomethylether
6-33* 1,4-Butandiol 110-63-4 2.000 Übernahme EU-LCI-Wert
6-34 Tripropylenglykolmono-methylether 20324-33-8
25498-49-1
2.000 Einzelstoffbetrachtung
6-35 Triethylenglykoldimethyether 112-49-2 7 Read across von 2-Methoxy-ethanol
6-36 1,2-Propylenglykoldimethylether 7778-85-0 25 Read across von 2-Methoxy-1-propanol
6-37* 2,2,4-Trimethylpentandiol-1,3-diisobutyrat 6846-50-0 450 Übernahme EU-LCI-Wert
6-38* Ethyldiglykol 111-90-0 350 Übernahme EU-LCI-Wert
6-39* Dipropylenglykoldimethylether 63019-84-1
89399-28-0
111109-77-4
1.300 Übernahme EU-LCI-Wert
6-40 Propylencarbonat 108-32-7 250 Einzelstoffbetrachtung
6-41 Hexylenglykol
(2-Methyl-2,4-pentandiol)
107-41-5 490 MAK: 49.000 µg/m3
6-42 3-Methoxy-1-butanol 2517-43-3 500 Einzelstoffbetrachtung
6-43 1,2-Propylenglykol-n-propylether 1569-01-3
30136-13-1
1.400 Einzelstoffbetrachtung
6-44 1,2-Propylenglykol-n-butylether 5131-66-8
29387-86-8
15821-83-7
63716-40-5
1.600 Einzelstoffbetrachtung
6-45 Diethylenglykolphenylether 104-68-7 1.450 Read across von 2-Phenoxy-ethanol
6-46 Neopentylglykol (2,2-Dimethylpropan-1,3-diol) 126-30-7 1.000 Einzelstoffbetrachtung
7 Aldehyde
7-1* Butanal 123-72-8 650 VVOC
Übernahme EU-LCI-Wert
7-2* Pentanal 110-62-3 800 Übernahme EU-LCI-Wert
7-3* Hexanal 66-25-1 900 Übernahme EU-LCI-Wert
7-4* Heptanal 111-71-7 900 Übernahme EU-LCI-Wert
7-5* 2-Ethylhexanal 123-05-7 900 Übernahme EU-LCI-Wert
7-6* Octanal 124-13-0 900 Übernahme EU-LCI-Wert
7-7* Nonanal 124-19-6 900 Übernahme EU-LCI-Wert
7-8* Decanal 112-31-2 900 Übernahme EU-LCI-Wert
7-9 2-Butenal (Crotonaldehyd, cis-trans-Gemisch) 4170-30-3
123-73-9
15798-64-8
1# Einzelstoffbetrachtung
7-10 2-Pentenal 1576-87-0
764-39-6
31424-04-1
12 Read across von 2-Butenal, aber keine EU-Mutagenitätseinstufung
7-11 2-Hexenal 16635-54-4
6728-26-3
505-57-7
1335-39-3
14 Read across von 2-Pentenal
7-12 2-Heptenal 2463-63-0
18829-55-5
29381-66-6
16 Read across von 2-Pentenal
7-13 2-Octenal 2363-89-5
25447-69-2
20664-46-4
2548-87-0
18 Read across von 2-Pentenal
7-14 2-Nonenal 2463-53-8
30551-15-6
18829-56-6
60784-31-8
20 Read across von 2-Pentenal
7-15 2-Decenal 3913-71-1
2497-25-8
3913-81-3
22 Read across von 2-Pentenal
7-16 2- Undecenal 2463-77-6
53448-07-0
24 Read across von 2-Pentenal
7-17 Furfural 98-01-1 20 Einzelstoffbetrachtung
7-18 Glutaraldehyd 111-30-8 2# AGW: 200 µg/m3
7-19 Benzaldehyd 100-52-7 90 WEEL (AIHA): 8.800 µg/m3
7-20* Acetaldehyd 75-07-0 1.200 VVOC
Übernahme EU-LCI-Wert
7-21 Propanal 123-38-6 VVOC
7-22* Formaldehyd 50-00-0 100 Einzelstoffbetrachtung
8 Ketone
8-1* Ethylmethylketon 78-93-3 5.000 Übernahme EU-LCI-Wert
8-2* 3-Methyl-2-butanon 563-80-4 7.000 Übernahme EU-LCI-Wert
8-3 Methylisobutylketon 108-10-1 830 AGW: 83.000 µg/m3
8-4* Cyclopentanon 120-92-3 900 Übernahme EU-LCI-Wert
8-5* Cyclohexanon 108-94-1 410 Übernahme EU-LCI-Wert
8-6 2-Methylcyclopentanon 1120-72-5 1.000 Read across von Cyclopentanon
8-7* 2-Methylcyclohexanon 583-60-8 2.300 Übernahme EU-LCI-Wert
8-8* Acetophenon 98-86-2 490 Übernahme EU-LCI-Wert
8-9 1-Hydroxyaceton
(1 -Hydroxy-2-propanon)
116-09-6 2.400 Read across von Propylenglykol
8-10* Aceton 67-64-1 1.200 VVOC
AGW: 1.200.000 µg/m3
9 Säuren
9-1 Essigsäure 64-19-7 1.250 Einzelstoffbetrachtung
9-2* Propionsäure 79-09-4 310 Übernahme EU-LCI-Wert
9-3 Isobuttersäure 79-31-2 370 Read across von Propionsäure
9-4 Buttersäure 107-92-6 370 Read across von Propionsäure
9-5 Pivalinsäure 75-98-9 420 Read across von Propionsäure
9-6 n-Valeriansäure 109-52-4 420 Read across von Propionsäure
9-7 n-Capronsäure 142-62-1 490 Read across von Propionsäure
9-8 n-Heptansäure 111-14-8 550 Read across von Propionsäure
9-9 n-Octansäure 124-07-2 600 Read across von Propionsäure
9-10* 2-Ethylhexansäure 149-57-5 150 Read across von Propionsäure
10 Ester und Lactone
10-1 Methylacetat 79-20-9 VVOC
10-2 Ethylacetat 141-78-6 VVOC
10-3 Vinylacetat 108-05-4 VVOC
10-4* Isopropylacetat 108-21-4 4.200 Übernahme EU-LCI-Wert
10-5* Propylacetat 109-60-4 4.200 Übernahme EU-LCI-Wert
10-6* 2-Methoxy-1-methylethylacetat 108-65-6 2.700 Übernahme EU-LCI-Wert
10-7 n-Butylformiat 592-84-7 2.000 Read across von Methylformiat (AGW: 120.000 µg/m3)
10-8 Methylmethacrylat 80-62-6 2.100 AGW: 210.000 µg/m3
10-9 andere Methacrylate 2.100 Read across von Methylmethacry-lat
10-10* Isobutylacetat 110-19-0 4.800 Übernahme EU-LCI-Wert
10-11* 1-Butylacetat 123-86-4 4.800 Übernahme EU-LCI-Wert
10-12* 2-Ethylhexylacetat 103-09-3 350 Read across von 2-Ethyl-1-hexanol
10-13* Methylacrylat 96-33-3 180 Übernahme EU-LCI-Wert
10-14* Ethylacrylat 140-88-5 210 Übernahme EU-LCI-Wert
10-15* n-Butylacrylat 141-32-2 110 Übernahme EU-LCI-Wert
10-16* 2-Ethylhexylacrylat 103-11-7 380 Übernahme EU-LCI-Wert
10-17* andere Acrylate (Acrylsäureester) 110 Übernahme EU-LCI-Wert
10-18* Adipinsäuredimethylester 627-93-0 50 Übernahme EU-LCI-Wert
10-19* Fumarsäuredibutylester 105-75-9 50 Übernahme EU-LCI-Wert
10-20* Bernsteinsäuredimethylester 106-65-0 50 Übernahme EU-LCI-Wert
10-21 * Glutarsäuredi methylester 1119-40-0 50 Übernahme EU-LCI-Wert
10-22* Hexandioldiacrylat 13048-33-4 10 Übernahme EU-LCI-Wert
10-23* Maleinsäuredibutylester 105-76-0 50 Übernahme EU-LCI-Wert
10-24 Butyrolacton 96-48-0 2.700 Einzelstoffbetrachtung
10-25 Glutarsäurediisobutylester 71195-64-7 100 Einzelstoffbetrachtung
10-26 Bernsteinsäurediisobutylester 925-06-4 100 Einzelstoffbetrachtung
11 Chlorierte Kohlenwasserstoffe
Derzeit nicht belegt.
12 Andere
12-1 1,4-Dioxan 123-91-1 73 AGW: 73.000 µg/m3
12-2* Caprolactam 105-60-2 300 Übernahme EU-LCI-Wert
12-3 N-Methyl-2-pyrrolidon 872-50-4 400 EU-OEL: 40.000 µg/m3
12-4* Octamethylcyclotetrasiloxan (D4) 556-67-2 1.200 Übernahme EU-LCI-Wert
12-5* Methenamin, Hexamethylentet- ramin (Formaldehydabspalter) 100-97-0 30 Übernahme EU-LCI-Wert
12-6 2-Butanonoxim 96-29-7 20 Einzelstoffbetrachtung
12-7 Tributylphosphat 126-73-8 SVOC
12-8 Triethylphosphat 78-40-0 75 Read across von Tributylphosphat
(MAK: 11.000 µg/m3)
12-9* 5-Chlor-2-methyl-4- isothiazolin-3-on (CIT) 26172-55-4 1 # Übernahme EU-LCI-Wert
12-10* 2-Methyl-4-isothiazolin-3-on (MIT) 2682-20-4 100 Übernahme EU-LCI-Wert
12-11 Triethylamin 121-44-8 42 AGW: 4.200 µg/m3
12-12 Decamethylcyclopentasiloxan (D5) 541-02-6 1.500 Read across von Octamethyl-cyclotetrasiloxan
12-13 Dodecamethylcyclohexasiloxan (D6) 540-97-6 1.200 Read across von Octamethyl-cyclotetrasiloxan
12-14 Tetrahydrofuran 109-99-9 1.500 AGW: 150.000 µg/m3
12-15 Dimethylformamid 68-12-2 15 AGW: 15.000 µg/m3
12-16* Tetradecamethylcyclohepta- siloxan (D7) 107-50-6 1.200 Read across von Octamethyl-cyclotetrasiloxan
* Neuaufnahme/Änderungen 2015

# Erst ab einer gemessenen Emission von 5 µg/m3 findet eine Bewertung im Rahmen des NIK-Werte-Konzepts statt.

VVOC leichtflüchtige organische Verbindungen (englisch, very volatile organic compounds)

SVOC schwerflüchtige organische Verbindungen (englisch, semivolatile organic compounds)

1) Um die Kompatibilität zur Auswertungsmaske ADAM zu wahren, können vormals belegte laufende Nummern der NIK-Liste bei Wegfall oder Umsortierung von Stoffen oder Stoffgruppen nicht mehr neu belegt werden.

.

Anlage 3

Die Innenraumluftzusammensetzung in baulichen Anlagen wird primär von Produkten beeinflusst, die nennenswerte Anteile organischer Natur enthalten und daher zur Freisetzung flüchtiger organischer Verbindungen führen können. Dies sind insbesondere die nachfolgend aufgeführten Produkte:

Die Liste der genannten Produkte ist nicht abschließend. Neue innovative Produkte oder wissenschaftliche Erkenntnisse zu den Auswirkungen solcher Produkte machen gegebenenfalls Änderungen erforderlich.

.

Textile Bodenbeläge
Stand: Mai 2017
Anhang 9

1 Gegenstand und Geltungsbereich

Im Dokument "Anforderungen an bauliche Anlagen bezüglich des Gesundheitsschutzes" (ABG) finden sich die allgemeinen Grundlagen für die gesundheitliche Bewertung von baulichen Anlagen, Bauteilen, Bausätzen und Baustoffen, die zur Einhaltung der notwendigen Anforderungen an Gebäude erforderlich sind, während in der technischen Regel "Textile Bodenbeläge" die produktspezifischen Anforderungen an textile Bodenbeläge konkretisiert werden.

Dieses Dokument spezifiziert die Prüfbedingungen (Anforderungen an den Prüfkörper, Beladung der Prüfkammer etc.) sowie die Parameter zur Einteilung von Einzelprodukten in Gruppen und der Auswahl des für die jeweilige Gruppe repräsentativen Produkts (worst case).

Diese technische Regel gilt nicht:

2 Anforderungen

Die Anforderungen, die im Dokument "Anforderungen an bauliche Anlagen bezüglich des Gesundheitsschutzes" (ABG), Kapitel 2, ausgeführt sind, sind einzuhalten. Danach sind die Inhaltsstoffe, die Emissionen flüchtiger organischer Verbindungen sowie Anforderungen an den Gehalt zu bewerten.

2.1 Ermittlung und Bewertung der flüchtigen organischen Emissionen (VVOC-, VOC- und SVOC-Emissionen) sowie ggf. weiterer Emissionen textiler Bodenbeläge

Die Emission gefährlicher Stoffe wird anhand von Prüfkammer-Tests von einer sachverständigen Prüfstelle (siehe Abschnitt 2.4) gemäß ABG, Abschnitt 2.2.1.1, bestimmt und bewertet. Diese Prüfkammertests sind für jedes Einzelprodukt oder für ein repräsentatives Produkt einer Gruppe von chemisch ähnlichen Einzelprodukten entsprechend nachfolgender Gruppenbildungsparameter durchzuführen.

2.1.1 Gruppenbildungsparameter und Auswahl des repräsentativen Produkts (worst case-Szenario)

Einzelne textile Bodenbeläge sind nacheinander entsprechend:

in Gruppen einzuteilen (siehe Abbildung 1).

Als repräsentativ für eine Gruppe wird das Produkt angesehen, für welches die höchsten Emissionen zu erwarten sind - in der Regel handelt es sich hierbei um das schwerste und dickste Produkt, wobei im Zweifel das schwerste Produkt auszuwählen ist. Ggf. müssen mehrere Produkte einer Gruppe geprüft werden. Die Werte werden als repräsentativ für die Gruppe angenommen.

2.1.1.1 Einteilung entsprechend dem Herstellungsverfahren

Die Einzelprodukte werden zunächst entsprechend dem Herstellungsverfahren nach DIN EN 1307:2014-07 in:

unterteilt.

2.1.1.2 Einteilung entsprechend der chemischen Basis des Polmaterials / der Nutzschicht

Die nach dem Herstellungsverfahren unterteilten Einzelprodukte werden entsprechend der chemischen Basis des Polmaterials / der Nutzschicht in:

weiter gegliedert. Bei Materialmischungen ist die chemische Basis des Polmaterials mit mindestens 50 % Gewichtsanteil zur Einteilung ausschlaggebend.

2.1.1.3 Einteilung entsprechend der Klebeschicht/ Verfestigung und der Rückenbasis

Die bisher nach Herstellverfahren und Polschicht unterteilten textilen Bodenbeläge werden entsprechend des Rückenmaterials:

weiter eingeteilt. Hierbei ist darauf zu achten, dass bei Produkten mit gleichen Rücken auch die Klebeschichten / Verfestigungen jeweils auf gleicher chemischer Basis beruhen müssen, um in dieselbe Gruppe eingeteilt werden zu können.

2.1.1.4 Einteilung entsprechend der chemischen Zusatzausrüstung

Zuletzt werden die textilen Bodenbeläge anhand der chemischen Zusatzausrüstung in:

final unterteilt.

Abbildung 1: Beispiel einer Gruppeneinteilung

Es ist zu beachten, dass Änderungen der chemischen Zusammensetzung eine neue Bewertung der Produkte / der Gruppe erfordert, welche erneute Emissionsprüfungen zur Folge haben kann.

2.1.2 Probenahme des Produkts, Transport und Lagerung der Probe

Die Probenahme, Transport und Lagerung der Probe erfolgt grundsätzlich gemäß DIN prEN 16516:2015-07 1 und CEN/TR 16220:2011. Die Proben sind produktionsfrisch bzw. mit Erreichen der frühesten Handelsfähigkeit zu entnehmen und es ist ein Probenahmeprotokoll mit allen wesentlichen Daten anzufertigen (Beispiel siehe Anlage 1) und der Probe beizufügen.

Grundsätzlich ist zu beachten, dass Einflüsse wie:

das Untersuchungsergebnis verfälschen bzw. die Probe kontaminieren können.

2.1.2.1 Probengröße / Probenahme

Zur Entnahme der Probe bei Rollenware wird ein Meter oder mindestens die äußere Lage der Rolle abgerollt. Von der sich anschließenden Fläche werden 1 bis 1,5 laufende Meter als Probe entnommen. Die Probe sollte in ihrer Breite 2 m möglichst nicht überschreiten. Gegebenenfalls ist die Breite der Probe entsprechend einzukürzen. Nach Entnahme der Probe wird diese quer zur ursprünglichen Rollrichtung mit der Belagsunterseite nach außen aufgerollt. Die Probe ist nach dem Aufrollen mit Klammern oder Kordel, keinesfalls aber mit Klebebändern, gegen Entrollen zu sichern.

Bei der Probenahme von Fliesen textiler Beläge ist eine vollständige Verpackungseinheit zu entnehmen. Ist der Versand der Verpackungseinheit aufgrund ihrer Größe nicht möglich, so sind vier Fliesen (ggf. bei kleinen Fliesen mehr) paarweise - Oberseite auf Oberseite liegend - aus der Mitte einer Verpackungseinheit zu entnehmen. Textile Fliesenbeläge dürfen nicht gerollt werden.

2.1.2.2 Verpackung

Nach der Gewinnung der Probe muss diese innerhalb einer Stunde in Aluminiumfolie gewickelt und anschließend in einen emissionsarmen Polyethylen-Beutel verpackt und verschlossen werden. Alternativ kann dazu auch aluminiertes Verpackungsmaterial verwendet werden. Um eine Kontamination von außen zu vermeiden, wird die Verpackung entweder mit einem Folienschweißgerät oder mit emissionsarmem Klebeband möglichst luftdicht verschlossen. Verschiedene Proben müssen auch getrennt voneinander verpackt werden.

2.1.2.3 Transport / Versand / Lagerung

Zum Versand können die üblichen Paket- und Kurierdienste beauftragt werden. Beim Transport ist darauf zu achten, dass die Probe nicht in der Nähe von lösemittelhaltigen Stoffen gelagert wird (z.B. Reservekanister).

2.1.3 Herstellung und Vorbereitung des Prüfstücks

Das Prüfstück wird grundsätzlich nach DIN EN ISO 16000-11, Anhang A, hergestellt und vorbereitet. Abweichend von der Norm kann das Prüfstück auch ausgestanzt werden. Eine Kantenabdichtung ist nicht erforderlich, da der Einfluss der Kanten textiler Bodenbeläge auf die Emission vernachlässigbar ist.

Nach der Fertigstellung des Prüfstücks wird dieses sofort in die Emissionsprüfkammer überführt. Dieser Zeitpunkt wird als Startpunkt der Emissionsprüfung (t0) angesehen.

2.1.4 Prüfkammerbedingungen für Emissionsmessung von textilen Bodenbelagsproben

Auf Basis der Abmessungen des Referenzraums (DIN EN 16516:2018-01) wird für einen textilen Bodenbelag der folgende Beladungsfaktor festgelegt:

Entsprechend DIN EN 16516:2018-01 werden für die Emissionsprüfung eine Luftwechselrate von 0,5/h und die klimatischen Bedingungen mit 23 °C ± 1 °C und 50 % ± 5 % relative Luftfeuchte festgelegt. Das Prüfkammervolumen darf 20 l nicht unterschreiten.

2.1.5 Emissionsmessung von textilen Bodenbelagsproben

Die Messung der Emissionen von textilen Bodenbelagsproben erfolgt entsprechend den Bestimmungen der ABG und der Norm DIN EN 16516:2018-01 und ist nach 3 Tagen und 28 Tagen auszuwerten.

Die Emissionsprüfung kann 7 Tage nach Beladung der Prüfkammer vorzeitig beendet werden, wenn die ermittelten Werte unterhalb von 50 % der in den ABG vorgegebenen 28-Tage-Werte liegen und im Vergleich zur Messung am 3. Tag kein signifikanter Konzentrationsanstieg einzelner Substanzen festzustellen ist. Die Erfüllung dieser Kriterien ist durch die Prüfstelle hinreichend zu begründen. Die 50 %-Marke gilt für alle Parameter, somit auch für den R-Wert.

2.2 Bewertung der flüchtigen organischen Emissionen (VVOC-, VOC- und SVOC-Emissionen)

Die Ergebnisse der Emissionsmessungen auf VVOC, VOC und SVOC sind nach ABG, Kapitel 2.2.1.1, zu bewerten und in einem Prüfbericht detailliert anzugeben.

2.3 Bestimmung des Gehaltes von polyzyklischen aromatischen Kohlenwasserstoffen (PAK)

Beim Einsatz von bitumenhaltigen Schwerbeschichtungen ist die Prüfung des PAK-Gehaltes des Bitumens erforderlich. Der analytische Nachweis der PAK erfolgt nach Vorgaben der Environmental Protection Agency (EPA) in Anlehnung an AfPS GS 2014:01 PAK unter Verwendung eines internen Standards. Der Gehalt an BaP als Leitsubstanz wird auf 5 mg/kg und für PAK auf 50 mg/kg beschränkt.

2.4 Anforderungen an die Prüfstellen zur Durchführung von Emissionsprüfungen für textile Bodenbeläge

Prüfstellen für die Emissionsprüfungen müssen folgende Anforderungen erfüllen:

_____
2) In Deutschland umgesetzt durch DIN EN ISO/IEC 17025

3) In Deutschland umgesetzt durch DIN CEN/TS 16516

.

Probenahmeprotokoll für Emissionsprüfungen von textilen Bodenbelägen Anlage 1


Name des Antragstellers
(Adresse / Stempel):
Produkthersteller (falls abweichend vom Antragsteller):
Werk, in dem die Probe entnommen wird: Probenehmer
(bitte markieren):
Name, Firma, Telefon:
Produktname: Belagstyp textiler Bodenbelag:
Modell / Programm / Serie: Chargen-Nr.:
Artikel-Nr.: Datum der Produktion der Charge:
Datum der Probenahme: Uhrzeit:
Probe wird entnommen [ ] aus der laufenden Produktion
[ ] aus Lagerbeständen
[ ] aus Rückstellproben
Wie wurde das Produkt vor Probenahme gelagert? [ ] offen
[ ] verpackt
Ort der Lagerung: Verpackungsart und -material:
Besonderheiten (mögliche negative Einflüsse durch Emissionen am Probenahmeort, Benzin-Abgase, Lösemittelemissionen aus der Fertigung, Unklarheiten, Fragen, etc.):
Vorgesehene Prüfungen:
[ ] Emissionsprüfung

[ ] Konstruktionsmerkmale

[ ] andere / weitere (PAK, Nitrosamine etc.)

Bestätigung

Hiermit bestätigt der Unterzeichner die Richtigkeit der oben gemachten Angaben. Die Probe wurde eigenhändig gemäß Probenahmeanleitung ausgewählt, entnommen und verpackt.

Datum: Unterschrift:
(Stempel)
*) Bitte pro Probe ein Probenahmebegleitblatt ausfüllen!

Abkürzungsverzeichnis

ABG Anforderungen an bauliche Anlagen bezüglich des Gesundheitsschutzes
BAM Bundesanstalt für Materialforschung
BaP Benzo(a)pyren
BauPVO Bauproduktenverordnung
CPD Construction Product Directive (abgelöst seit 01.07.2013 durch die CPR - Construction Product Regulation)
DIN Deutsches Institut für Normung
EN Europäische Norm
EPA Environmental Protection Agency
IFA Institut für Arbeitsschutz
LBO Landesbauordnung
NIK Niedrigste interessierende Konzentration
PAK Polyzyklische aromatische Kohlenwasserstoffe
Pa 6 Polyamid 6 (Nylon)
Pa 6.6 Polyamid 6.6 (Dederon)
PES Polyester
PP Polypropylen
prEN Normentwurf
PVC Polyvinylchlorid
R-Wert Summe aller Ri wobei Ri = ci / NIKi
SVOC Schwerflüchtige organische Verbindungen
t0 Beginn der Emissionsmessung
VOC Flüchtige organische Verbindungen
VVOC Leichtflüchtige organische Verbindungen

Literatur- und Normenverzeichnis

CEN/TR 16220:2011 Bauprodukte - Bewertung der Freisetzung von gefährlichen Stoffen - Ergänzung zur Probenahme
DIN CEN/TS 16516:2013-12/
DIN SPEC 18023:2013-12
Bauprodukte - Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft
DIN EN 1307:2014-07 Textile Bodenbeläge - Einstufung
DIN EN 16516 erwartet in 2017 Bauprodukte - Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft
DIN EN ISO 16000-11:2006-06 Innenraumluftverunreinigungen - Teil 11: Bestimmung der Emission von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen - Probenahme, Lagerung der Proben und Vorbereitung der Prüfstücke
DIN EN ISO/IEC 17025:2005-08 Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien
DIN prEN 16516:2015-07 Bauprodukte - Bewertung der Freisetzung von gefährlichen Stoffen - Bestimmung von Emissionen in die Innenraumluft (Norm-Entwurf)
AfPS GS 2014:01 PAK Prüfung und Bewertung von Polyzyklischen Aromatischen Kohlenwasserstoffen (PAK) bei der Zuerkennung des GS-Zeichens

.

Anforderungen an bauliche Anlagen bezüglich der Auswirkung en auf Boden und Gewässer (ABuG)
Stand: Juli 2017
Anhang 10

1 Gegenstand und Geltungsbereich

Die Musterbauordnung ( MBO), umgesetzt in den Landesbauordnungen (LBO), bestimmt in § 3, dass Anlagen so anzuordnen, zu errichten, zu ändern und instand zu halten sind, dass die öffentliche Sicherheit und Ordnung, insbesondere Leben, Gesundheit und die natürlichen Lebensgrundlagen, nicht gefährdet werden und sie die Anforderungen u. a. an den Umweltschutz erfüllen.

Zur Erfüllung der in der MBO 1/den LBO formulierten Anforderungen ist bei baulichen Anlagen oder Teilen von baulichen Anlagen, die in Boden und Grundwasser eingebaut bzw. durch Niederschlag beaufschlagt werden, sicherzustellen, dass die verwendeten Bauteile weder eine schädliche Bodenveränderung noch eine Grundwasserverunreinigung hervorrufen können.

In diesem Dokument werden die allgemeinen Anforderungen an bauliche Anlagen hinsichtlich ihrer Auswirkungen auf Boden und Gewässer konkretisiert.

Baulichen Anlagen, deren Bauteilen und den in ihnen verwendeten Bauprodukten, die in Boden und Grundwasser eingebaut bzw. durch Niederschlag beaufschlagt werden, kommt eine besondere Bedeutung hinsichtlich ihrer Auswirkungen auf die Schutzgüter Boden und Wasser zu. Aus ihnen können bei Kontakt mit Wasser Stoffe ausgewaschen werden und in Grundwasser, Meeresgewässer, Oberflächengewässer und/oder in den Boden gelangen, die negative Einflüsse auf deren Beschaffenheit haben und damit zur Gefährdung der natürlichen Lebensgrundlagen beitragen können.

Bauliche Anlagen, deren Bauteile und die in ihnen verwendeten Bauprodukte müssen daher im Hinblick auf den Umweltschutz Anforderungen an Inhaltsstoffe (Art und Menge) und an die Freisetzung gefährlicher Stoffe2 erfüllen. Diesbezüglich relevant ist insbesondere eine Bewertung der Freisetzung von Schwermetallen und organischen Stoffen. Zu berücksichtigen ist dabei auch die jeweilige Einbausituation (direkter bzw. indirekter Kontakt zu Boden und Grundwasser). Wenn durch konstruktive Maßnahmen eine Freisetzung von gefährlichen Stoffen ausgeschlossen ist, müssen keine Nachweise über die Freisetzung von gefährlichen Stoffen erbracht werden.

Gemäß § 1 Bundes-Bodenschutzgesetz ( BBodSchG) sollen bei Einwirkungen auf den Boden, hier bedingt durch bauliche Anlagen oder Teile von baulichen Anlagen, Beeinträchtigungen seiner natürlichen Funktionen sowie seiner Funktion als Archiv der Natur- und Kulturgeschichte so weit wie möglich vermieden werden.

Beim Einsatz von Abfällen in baulichen Anlagen, Bauteilen und den in ihnen verwendeten Bauprodukten dürfen generell (unabhängig vom Kontakt zu Boden, Niederschlag oder Wasser) Beeinträchtigungen des Wohls der Allgemeinheit nicht zu erwarten sein; insbesondere darf keine Schadstoffanreicherung im Wertstoffkreislauf erfolgen.

Der Erlaubnisvorbehalt der zuständigen Wasserbehörden, insbesondere in Wasserschutzzonen, bleibt durch die Regelungen der ABuG unberührt.

Tabelle 1 enthält die Bauteile, die im Kontakt mit Boden, Grundwasser und/oder Niederschlag stehen und für die derzeit die Erfüllung der Anforderungen an den Umweltschutz nach den Landesbauordnungen zu erbringen ist (umweltrelevante Bauteile).

Tabelle 1: Umweltrelevante Bauteile (Bauteile mit Kontakt zu Boden, Grundwasser und/oder Niederschlag)

Bauteile Anforderung s. Abschnitt
Dach Dachbauteile aus Metall 4.1
Dachbauteile aus Beton 4.2
Dachbauteile aus Holz 4.3
Abdichtungen 4.4
Außenwand einschließlich Träger und Stützen Bauteile für Außenwände aus Metall 5.1
Bauteile für Außenwände aus Beton 5.2
Bauteile für Außenwände aus Holz 5.3
Abdichtungen 5.4
Brandschutzprodukte zum Aufhalten von Feuer im Brandfall 5.5
Flächenbeläge Bauteile für Flächenbeläge aus Beton 6.1
Bauteile für Flächenbeläge aus Holz 6.2
Abwasserbehandelte Flächenbeläge 6.3
Gründungen inkl. Pfähle Injektions- und Verpressmaterialien 7.2
Bauteile aus Beton 7.3
Abdichtungen 7.4
Baugrubenabdichtung Injektions- und Verpressmittel aus Bindemittelsuspensionen o- der Einpressmörtel 8.2
Injektions- und Verpressmittel auf Silikatbasis 8.3
Körnige Schüttungen Schüttungen unter Verwendung von Abfällen 9.1
Schaumglasschotter als Schüttung unter Gründungsplatten 9.2
Filtermaterialien zur Behandlung von Niederschlagsabwasser, das versickert werden soll 9.3
Unterirdische Rohre und Behälter Unterirdische Behälter und Rohre aus Beton 10.1
Kanalsanierungsmittel 10.2

2 Anforderungen an den Gehalt an gefährlichen Stoffen

Umweltrelevante Bauteile müssen folgende Anforderungen bezüglich ihres Gehaltes an gefährlichen Stoffen erfüllen:

Geltende gesetzliche Verwendungsverbote und Beschränkungen für spezielle Stoffe sind einzuhalten (z.B. Chemikalienverbotsverordnung, REACH-Verordnung (EU) Nr. 1907/2006 Anhang XVII).

Bei Verwendung von Altholz als Bestandteil von Bauteilen sind die Anforderungen der Altholzverordnung ( AltHolzV) zu erfüllen und insbesondere die dort festgelegten stofflichen Grenzwerte einzuhalten.

Es dürfen nur Biozide eingesetzt werden, die gemäß der Anforderungen der Biozid-Verordnung (EU) Nr. 528/2012 und den entsprechenden nationalen Umsetzungsregelungen je nach Einbauszenario in erdberührten und/oder in direkt mit Wasser in Kontakt kommenden Bauteilen verwendet werden dürfen.

Der Einsatz von Stoffen, die nach der CLP-Verordnung (EU) Nr. 1272/2008 in der jeweils aktuell geltenden Fassung mit H400, H410, H411, H300, H301, H310, H31 1, H370, H372 gekennzeichnet werden müssen, ist zu vermeiden. Sind solche Stoffe technisch unvermeidbar, ist nachzuweisen, dass die genannten Schutzgüter durch den Einsatz in der baulichen Anlage nicht gefährdet werden.

Persistente Stoffe ["Persistent Organic Pollutants (POPs)"] aus der jeweils aktuellen ICCA-Liste 3 dürfen nicht aktiv 4 eingesetzt werden.

Karzinogene (H350) und keimzellmutagene (H340) Stoffe gemäß der CLP-Verordnung (EU) Nr. 1272/2008 dürfen nicht aktiv 4 eingesetzt werden, es sei denn, es kann belegt werden, dass sie bei der Herstellung des Bauteils vollständig zu Verbindungen ausreagieren, von denen keine potentielle Gefährdung für Boden und Gewässer ausgeht.

Reproduktionstoxische Stoffe (H360D und/oder H360F) gemäß der CLP-Verordnung (EU) Nr. 1272/2008 dürfen nicht > 0,3 Gew.-% aktiv 4 eingesetzt werden, es sei denn, es kann belegt werden, dass sie bei der Herstellung des Bauteils vollständig zu Verbindungen ausreagieren, von denen keine potentielle Gefährdung für Boden und Gewässer ausgeht.

Gemäß den Anforderungen des § 7 Abs. 3 des Kreislaufwirtschaftsgesetzes ( KrWG) an die Schadlosigkeit der Abfallverwertung dürfen nach der Beschaffenheit der Abfälle, dem Ausmaß der Verunreinigungen und der Art der Verwertung Beeinträchtigungen des Wohls der Allgemeinheit nicht zu erwarten sein und insbesondere keine Schadstoffanreicherung im Wertstoffkreislauf erfolgen. Das heißt, bei der Bewertung von Bauprodukten ist - sofern Abfälle für die Herstellung des Bauproduktes verwendet werden - sicherzustellen, dass es durch den Einsatz belasteter Abfälle nicht zu einer Verschleppung von Schadstoffen in Bauprodukte und damit zu einer Schadstoffanreicherung in baulichen Anlagen kommt.

Werden mineralische Abfälle in Bauprodukten eingesetzt, müssen die grundsätzlichen Anforderungen der LAGA-Mitteilung 20 "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen - Technische Regeln" (Stand: 06.11.2003) erfüllt werden. Die Stoffgehalte im Eluat müssen mindestens die Zuordnungswerte Z 2 der jeweiligen abfallspezifischen Technischen Regeln dieses Regelwerkes einhalten. Wenn für einen Abfall keine abfallspezifische Technische Regel in der LAGA-Mitteilung 20 existiert, sind die Zuordnungswerte Z 2 der Technischen Regel Boden (Stand: 05.11.2004) heranzuziehen. Für die Stoffgehalte im Feststoff sind die Werte der Tabelle A-1 ( Anhang A) einzuhalten. Abweichungen sind möglich, wenn die Stoffgehalte im durch den Abfall substituierten, bisher für die Herstellung des Bauproduktes verwendeten Primärrohstoff höher liegen, oder - bei organischen Stoffen - diese Stoffe beim Herstellungsprozess des Bauproduktes soweit zerstört werden, dass die Anforderungswerte der Tabelle A-1 ( Anhang A) eingehalten werden.

3 Anforderungen an die Freisetzung gefährlicher Stoffe

Die Konzentration freigesetzter gefährlicher Stoffe aus baulichen Anlagen darf:

Dies gilt als erfüllt, wenn z.B. die Geringfügigkeitsschwellen 5 sowie die weiteren in diesem Abschnitt aufgeführten Anforderungen eingehalten werden.

Hinweis:

In Laborversuchen ermittelte Stoffkonzentrationen im Eluat sind in der Regel nicht direkt mit den Anforderungswerten am Ort der Beurteilung unter realen Bedingungen vergleichbar. Die Einbausituation und ggf. Transportpfade sind, z.B. mit Übertragungsfunktionen, zu berücksichtigen.

Die Freisetzung von gefährlichen Stoffen aus baulichen Anlagen darf keine dauerhaften Änderungen der elektrischen Leitfähigkeit, des pH-Wertes sowie anderer Veränderungen im Wasser wie Färbung, Trübung, Schaumbildung oder Geruch hervorrufen.

Wenn die Anforderungswerte ( Anhang A) bezüglich der Freisetzung gefährlicher Stoffe aus einem bestimmten Bauteil/Bauprodukt - sofern diese explizit angegeben sind - eingehalten werden, gelten diese Anforderungen als erfüllt.

Falls organische Stoffe aus baulichen Anlagen freigesetzt werden können, für die keine Prüfwerte existieren, sind zusätzlich die Anforderungen aus Tabelle 2 einzuhalten.

Tabelle 2: Anforderungen an umweltrelevante Bauteile aus organischen Materialien bezüglich biologischer Auswirkungen im Grundwasser

Parameter Prüfung während der Reaktion der Materialien* Prüfung von ausreagierten Materialien*
TOC Angabe in mg/l Angabe in mg/l
Scenedesmus-Chlorophyll-Fluoreszenztest nach DIN 38412-33 GA** ≤ 8 GA** ≤ 4
Beweglichkeitshemmtest mitDaphnia magna Straus nach DIN 38412-30 bzw. ISO 6341 GD ≤ 8 GD ≤ 4
Leuchtbakterien-Lumineszenz-Hemmtest mitVibrio fischeri nach DIN EN ISO 11348-1 bis DIN EN ISO 11348-3 oder
GL > 8, dann Leuchtbakterien-Zellvermehrungs-Hemmtest nach DIN 38412-37
GL ≤ 8

GLW ≤ 2

GL ≤ 8

GLW ≤ 2

Fischeitest mitDanio rerio nach DIN 38415-6 GEI ≤ 6 GEI ≤ 6
umu-Test auf erbgutveränderndes Potenzial nach DIN 38415-3 GEU ≤ 1,5 GEU ≤ 1,5
Biologische Abbaubarkeit, wenn TOC > 10 mg/l "leicht biologisch abbaubar" gemäß OECD 301 "leicht biologisch abbaubar" gemäß OECD 301
*) Die Anforderungen beziehen sich auf die Elutionsprüfung des jeweiligen Bauteils/Bauprodukts.

**) Gemäß der Prüfvorschrift wird eine Hemmung der Zellvermehrung von Grünalgen von 20 % und mehr als akut toxische Wirkung eingestuft. Die für eine unter 20 %ige Hemmung notwendige Verdünnungsstufe des Originaleluats (Verdünnungsstufe GA) wird bestimmt. Die weiteren G-Werte sind analog definiert.

4 Anforderungen an Dachbauteile

Für kleinteilige Bauteile, z.B. Befestigungen, Blitzableiter, ist kein Nachweis bezüglich der Freisetzung gefährlicher Substanzen zu erbringen.

4.1 Dachbauteile aus Metall

Hinweis:

Von großflächigen Metallblechen können Umweltbelastungen für Boden und Wasser ausgehen. Für die dezentrale Versickerung von Regenwasser wird auf die planungsrechtlichen und wasserrechtlichen Anforderungen sowie auf andere örtliche Rechtsvorschriften verwiesen, nach denen gegebenenfalls Niederschlagswasser nicht unbehandelt versickert werden darf.

4.2 Dachbauteile aus Beton

Betonausgangsstoffe, die in Dachbauteilen verwendet werden, müssen die in den folgenden Abschnitten aufgeführten Anforderungen erfüllen.

Beim Einsatz von natürlichen Gesteinskörnungen ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

4.2.1 Rezyklierte Gesteinskörnungen

Dachbauteile aus Beton, der unter Verwendung von rezyklierter Gesteinskörnung hergestellt wird, dürfen nur eingebaut werden, wenn die rezyklierte Gesteinskörnung die folgenden Anforderungen erfüllt:

Beim Einsatz von Fehlchargen von Fertigbetonteilen direkt im Herstellwerk als rezyklierte Gesteinskörnung ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

4.2.2 Industriell hergestellte Gesteinskörnungen

Dachbauteile aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, dürfen nur eingebaut werden, wenn die industriell hergestellten Gesteinskörnungen die folgenden Anforderungen einhalten:

Beim Einsatz von kristalliner Hochofenstückschlacke, Hüttensand, Schmelzkammergranulat, Blähglimmer (Vermikulit), Blähperlit, Blähschiefer, Blähton, Ziegelsplitt aus ungebrauchten Ziegeln sowie gesinterter Steinkohlenflugasche und Kesselasche (Kesselsand) aus solchen Wärmekraftwerken, in denen nur Kohle und keine Sekundärbrennstoffe mitverbrannt werden, als Gesteinskörnung (oder Gesteinsmehl) in Beton ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Industriell hergestellte Gesteinskörnungen, die weder in dem vorangegangen Absatz noch in der Tabelle A-4 genannt sind, sind für die Verwendung in Beton unzulässig.

4.2.3 Flugaschen

Dachbauteile aus Beton, der unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt wird, dürfen nur eingebaut werden, wenn die siliciumreiche Flugasche die folgenden Anforderungen einhält:

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Dachbauteile aus Beton gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

4.3 Dachbauteile aus Holz

Für Dachbauteile (einschließlich Fenstern) dürfen holzschutzmittelbehandelte Holzbauteile nur eingesetzt werden, wenn die Holzschutzmittel (Biozidprodukte) den Anforderungen der Biozid-Verordnung (EU) Nr. 528/2012 entsprechen. Bei der Verwendung von Biozidprodukten sind die in der Zulassung nach Biozid-Verordnung genannten Auflagen gemäß Artikel 22, Absatz 1, der Biozid-Verordnung bzw. national geltende Übergangsvorschriften nach der Verordnung über die Meldung von Biozid-Produkten nach dem Chemikaliengesetz ( Biozid-Meldeverordnung) einzuhalten. Holzbauteile, die mit Schutzmitteln gegen biologischen Befall behandelt sind, müssen nach DIN EN 15228:2009, Abschnitt 6, gekennzeichnet sein.

Bei der Verwendung von Dachbauteilen aus Altholz müssen die Anforderungen der Altholzverordnung eingehalten werden.

Holzbauteile für Dachbauteile, die mit Flammschutzmitteln behandelt sind, müssen die Anforderungen aus Abschnitt 2 bezüglich des Gehaltes an gefährlichen Stoffen einhalten. Die im Produkt enthaltenen gefährlichen Stoffe sind zu deklarieren.

4.4 Abdichtungen für Dachbauteile

Abdichtungen für Dachbauteile, die Stoffe enthalten, die eine Durchwurzelung hemmen oder verhindern sollen (Wurzelschutzmittel), dürfen nur eingebaut werden, wenn die Anforderungen gemäß Abschnitt 2 und für die Konzentration des Wurzelschutzmittels im Eluat die Anforderungen gemäß Abschnitt 3 eingehalten werden.

5 Anforderungen an Außenwände (einschließlich Träger und Stützen)

Für kleinteilige Bauteile, z.B. Befestigungen, ist kein Nachweis bezüglich der Freisetzung gefährlicher Substanzen zu erbringen.

Insbesondere für Bauteile für Außenwände aus Natursteinen, Glas oder Keramik ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

5.1 Bauteile für Außenwände aus Metall

Hinweis:

Von großflächigen Metallblechen können Umweltbelastungen für Boden und Wasser ausgehen. Für die dezentrale Versickerung von Regenwasser wird auf die planungsrechtlichen und wasserrechtlichen Anforderungen sowie auf andere örtliche Rechtsvorschriften verwiesen, nach denen ggf. Niederschlagswasser nicht unbehandelt versickert werden darf.

5.2 Bauteile für Außenwände aus Beton

Betonausgangsstoffe, die in Bauteilen für Außenwände verwendet werden, müssen die in den folgenden Abschnitten aufgeführten Anforderungen erfüllen.

Beim Einsatz von natürlichen Gesteinskörnungen ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

5.2.1 Rezyklierte Gesteinskörnungen

Bauteile für Außenwände aus Beton, der unter Verwendung von rezyklierter Gesteinskörnung hergestellt wird, dürfen nur eingebaut werden, wenn die rezyklierte Gesteinskörnung die folgenden Anforderungen erfüllt:

Beim Einsatz von Fehlchargen von Fertigbetonteilen direkt im Herstellwerk als rezyklierte Gesteinskörnung ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

5.2.2 Industriell hergestellte Gesteinskörnungen

Bauteile für Außenwände aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, dürfen nur eingebaut werden, wenn die industriell hergestellten Gesteinskörnungen die folgenden Anforderungen einhalten:

Für Außenwände aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, gilt, dass bei Verwendung in Kontakt mit Boden und Grundwasser die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 (an Festbetonprobekörpern) die Obergrenzen gemäß Tabelle A-6 (Anhang A) einhalten müssen.

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden oder Grundwasser verhindert wird.

Beim Einsatz von kristalliner Hochofenstückschlacke, Hüttensand, Schmelzkammergranulat, Blähglimmer (Vermikulit), Blähperlit, Blähschiefer, Blähton, Ziegelsplitt aus ungebrauchten Ziegeln sowie gesinterter Steinkohlenflugasche und Kesselasche (Kesselsand) aus solchen Wärmekraftwerken, in denen nur Kohle und keine Sekundärbrennstoffe mitverbrannt werden, als Gesteinskörnung (oder Gesteinsmehl) in Beton ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Industriell hergestellte Gesteinskörnungen, die weder in dem vorangegangen Absatz noch in der Tabelle A-4 genannt sind, sind für die Verwendung in Beton unzulässig.

5.2.3 Flugaschen

Bauteile für Außenwände aus Beton, der unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt wird, dürfen nur eingebaut werden, wenn die siliciumreiche Flugasche die folgenden Anforderungen einhält:

Für Außenwände aus Beton, der unter Verwendung von siliciumreicher Flugasche hergestellt wird, gilt, dass bei Verwendung in Kontakt mit Boden und Grundwasser die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 (an Festbetonprobekörpern) die Obergrenzen gemäß Tabelle A-6 (Anhang A) einhalten müssen.

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden oder Grundwasser verhindert wird.

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Außenwandbauteile aus Beton gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

5.2.4 Sulfathüttenzement und Calciumaluminatsulfatzement

Bauteile für Außenwände aus Beton, der unter Verwendung von Sulfathüttenzement oder Calciumaluminatsulfatzement hergestellt wird, dürfen in Kontakt mit Boden oder Grundwasser nur eingebaut werden, wenn die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 (an Festbetonprobekörpern) die Obergrenzen gemäß Tabelle A-7 ( Anhang A) einhalten.

Der Nachweis dieser Anforderungen entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden oder Grundwasser auszuschließen ist.

5.2.5 Betonzusatzmittel für Außenwände aus Beton

Betonzusatzmittel, die in Beton für Außenwände in Kontakt mit Boden oder Grundwasser eingesetzt werden, und für die es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik gibt, sind für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

5.3 Bauteile für Außenwände aus Holz

Für Außenwände (einschließlich Fenstern und Türen) dürfen holzschutzmittelbehandelte Holzbauteile nur eingesetzt werden, wenn die Holzschutzmittel (Biozidprodukte) den Anforderungen der Biozid-Verordnung (EU) Nr. 528/2012 entsprechen. Bei der Verwendung von Biozidprodukten sind die in der Zulassung nach Biozid-Verordnung genannten Auflagen gemäß Artikel 22, Absatz 1, der Biozid-Verordnung bzw. national geltende Übergangsvorschriften nach der Verordnung über die Meldung von Biozid-Produkten nach dem Chemikaliengesetz ( Biozid-Meldeverordnung) einzuhalten. Holzbauteile, die mit Schutzmitteln gegen biologischen Befall behandelt sind, müssen nach DIN EN 15228:2009, Abschnitt 6, gekennzeichnet sein.

Bei der Verwendung von Altholz für Bauteile für Außenwände müssen die Anforderungen der Altholzverordnung eingehalten werden.

Holzbauteile für Bauteile für Außenwände, die mit Flammschutzmitteln behandelt sind, müssen die Anforderungen aus Abschnitt 2 bezüglich des Gehaltes an gefährlichen Stoffen einhalten. Die im Produkt enthaltenen gefährlichen Stoffe sind zu deklarieren.

5.4 Abdichtungen für Außenwände

Für Schleierinjektionen als nachträgliche Bauwerksabdichtung gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

5.5 Brandschutzprodukte zum Aufhalten von Feuer im Brandfall

Reaktive Brandschutzbeschichtungen auf Stahlbauteilen, Brandschutzputzbekleidungen sowie linienförmige Fugenabdichtungen müssen die Anforderungen aus Abschnitt 2 bezüglich des Gehaltes an gefährlichen Stoffen einhalten. Die im Produkt enthaltenen gefährlichen Stoffe sind zu deklarieren.

6 Anforderungen an Flächenbeläge im Außenbereich

Für kleinteilige Bauteile, z.B. Befestigungen, ist kein Nachweis bezüglich der Freisetzung gefährlicher Substanzen zu erbringen.

6.1 Bauteile für Flächenbeläge im Außenbereich aus Beton

Betonausgangsstoffe, die in Bodenbelägen oder Stufenbelägen verwendet werden, müssen die in den folgenden Abschnitten aufgeführten Anforderungen erfüllen.

Beim Einsatz von natürlichen Gesteinskörnungen ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

6.1.1 Rezyklierte Gesteinskörnungen

Flächenbeläge aus Beton, der unter Verwendung von rezyklierter Gesteinskörnung hergestellt wird, dürfen nur eingebaut werden, wenn die rezyklierte Gesteinskörnung die folgenden Anforderungen erfüllt:

Beim Einsatz von Fehlchargen von Fertigbetonteilen direkt im Herstellwerk als rezyklierte Gesteinskörnung ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

6.1.2 Industriell hergestellte Gesteinskörnungen

Flächenbeläge aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, dürfen nur eingebaut werden, wenn die industriell hergestellten Gesteinskörnungen die folgenden Anforderungen einhalten:

Beim Einsatz von kristalliner Hochofenstückschlacke, Hüttensand, Schmelzkammergranulat, Blähglimmer (Vermikulit), Blähperlit, Blähschiefer, Blähton, Ziegelsplitt aus ungebrauchten Ziegeln sowie gesinterter Steinkohlenflugasche und Kesselasche (Kesselsand) aus solchen Wärmekraftwerken, in denen nur Kohle und keine Sekundärbrennstoffe mitverbrannt werden, als Gesteinskörnung (oder Gesteinsmehl) in Beton ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Industriell hergestellte Gesteinskörnungen, die weder in dem vorangegangen Absatz noch in der Tabelle A-4 genannt sind, sind für die Verwendung in Beton unzulässig.

6.1.3 Flugaschen

Flächenbeläge aus Beton, der unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt wird, dürfen nur eingebaut werden, wenn die siliciumreiche Flugasche die folgenden Anforderungen einhält:

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Flächenbeläge aus Beton gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

6.2 Flächenbeläge aus Holzbauteilen

Als Flächenbeläge dürfen holzschutzmittelbehandelte Holzbauteile nur eingesetzt werden, wenn die Holzschutzmittel (Biozidprodukte) den Anforderungen der Biozid-Verordnung (EU) Nr. 528/2012 entsprechen. Bei der Verwendung von Biozidprodukten sind die in der Zulassung nach Biozid-Verordnung genannten Auflagen gemäß Artikel 22, Absatz 1, der Biozid-Verordnung bzw. national geltende Übergangsvorschriften nach der Verordnung über die Meldung von Biozid-Produkten nach dem Chemikaliengesetz ( Biozid-Meldeverordnung) einzuhalten. Holzbauteile, die mit Schutzmitteln gegen biologischen Befall behandelt sind, müssen nach DIN EN 15228:2009, Abschnitt 6, gekennzeichnet sein.

Bei der Verwendung von Altholz für Flächenbeläge müssen die Anforderungen der Altholzverordnung eingehalten werden.

Holzbauteile für Flächenbeläge, die mit Flammschutzmitteln behandelt sind, müssen die Anforderungen aus Abschnitt 2 bezüglich des Gehaltes an gefährlichen Stoffen einhalten. Die im Produkt enthaltenen gefährlichen Stoffe sind zu deklarieren.

6.3 Abwasserbehandelnde Flächenbeläge

Für wasserdurchlässige Beläge für KFZ-Verkehrsflächen für die Behandlung des Abwassers zur anschließenden Versickerung gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

7 Anforderungen an Gründungen inklusive Pfähle

7.1 Allgemeines

In Injektionsmitteln und Verpressmaterialien, die für Gründungen und Pfähle direkt im Grundwasser eingesetzt werden, dürfen keine rezyklierten oder industriell hergestellten Gesteinskörnungen verwendet werden.

7.2 Injektions- und Verpressmaterialien für Gründungen inklusive Pfähle

7.2.1 Flugasche

Gründungen inklusive Pfähle aus Bindemittelsuspensionen, Einpressmörtel (Zementmörtel) oder Beton, die unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt werden, dürfen nur eingebaut werden, wenn die Flugasche die folgenden Anforderungen einhält:

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 von Mörtel bzw. Beton, der unter Verwendung von siliciumreicher Flugasche hergestellt ist, die Obergrenzen gemäß Tabelle A-5 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Gründungen inklusive Pfähle aus Bindemittelsuspensionen, Einpressmörtel (Zementmörtel) oder Beton gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

7.3 Gründungen aus Beton

Betonausgangsstoffe, die in Gründungen verwendet werden, die Kontakt zu Grundwasser oder Boden haben, müssen die in den folgenden Abschnitten aufgeführten Anforderungen erfüllen.

Beim Einsatz von natürlichen Gesteinskörnungen ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

7.3.1 Rezyklierte Gesteinskörnungen

Gründungen aus Beton, der unter Verwendung von rezyklierter Gesteinskörnung hergestellt wird, dürfen nur eingebaut werden, wenn die rezyklierte Gesteinskörnung die folgenden Anforderungen erfüllt:

Beim Einsatz von Fehlchargen von Fertigbetonteilen direkt im Herstellwerk als rezyklierte Gesteinskörnung ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

7.3.2 Industriell hergestellte Gesteinskörnungen

Gründungen aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, dürfen nur eingebaut werden, wenn die industriell hergestellten Gesteinskörnungen die folgenden Anforderungen einhalten:

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

Beim Einsatz von kristalliner Hochofenstückschlacke, Hüttensand, Schmelzkammergranulat, Blähglimmer (Vermikulit), Blähperlit, Blähschiefer, Blähton, Ziegelsplitt aus ungebrauchten Ziegeln sowie gesinterter Steinkohlenflugasche und Kesselasche (Kesselsand) aus solchen Wärmekraftwerken, in denen nur Kohle und keine Sekundärbrennstoffe mitverbrannt werden, als Gesteinskörnung (oder Gesteinsmehl) in Beton ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Industriell hergestellte Gesteinskörnungen, die weder in dem vorangegangen Absatz noch in der Tabelle A-4 genannt sind, sind für die Verwendung in Beton unzulässig.

7.3.3 Flugaschen

Gründungen aus Beton, der unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt wird, dürfen nur eingebaut werden, wenn die Flugasche die folgenden Anforderungen einhält:

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Gründungen aus Beton gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

7.3.4 Sulfathüttenzement und Calciumaluminatsulfatzement

Gründungen aus Beton, der unter Verwendung von Sulfathüttenzement oder Calciumaluminatsulfatzement hergestellt wird, dürfen nur eingebaut werden, wenn die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 (an Festbetonprobekörpern) die Obergrenzen gemäß Tabelle A-7 ( Anhang A) einhalten.

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-7 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

7.3.5 Betonzusatzmittel

Betonzusatzmittel, die für Gründungen aus Beton verwendet werden und für die es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik gibt, sind für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

7.4 Abdichtungen für Gründungen

Für Schleierinjektionen als nachträgliche Bauwerksabdichtung gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

8. Anforderungen an Sohlabdichtungen zur Herstellung von Baugruben

8.1 Allgemeines

In Injektionsmitteln aus Bindemittelsuspensionen oder Einpressmörtel (Zementmörtel), die direkt im Grundwasser eingesetzt werden, dürfen keine rezyklierten oder industriell hergestellten Gesteinskörnungen verwendet werden. Injektionsmittel mit dem Bestandteil bzw. dem Reaktionsprodukt Acrylamid dürfen nicht verwendet werden.

8.2 Injektions- und Verpressmittel für Sohlabdichtungen aus Bindemittelsuspensionen oder Einpressmörtel

8.2.1 Flugasche für zementgebundene Sohlabdichtungen

Injektionsmittel aus Bindemittelsuspensionen oder Einpressmörtel (Zementmörtel), die unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt werden, dürfen nur eingebaut werden, wenn die Flugasche die folgenden Anforderungen einhält:

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für Injektionsmittel aus Bindemittelsuspensionen oder Einpressmörtel (Zementmörtel) gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

8.3 Injektions- und Verpressmittel für Sohlabdichtungen auf Silikatbasis

Für Injektions- und Verpressmittel für Sohlabdichtungen auf Silikatbasis gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

9 Anforderungen an Schüttungen

9.1 Schüttungen unter Verwendung von Abfällen

Schüttungen, die unter Verwendung von Abfällen hergestellt werden, müssen die Anforderungen des Kreislaufwirtschaftsgesetzes, des Bundes-Bodenschutzgesetzes, der Bundes-Bodenschutz- und Altlastenverordnung und des Wasserhaushaltsgesetzes einhalten. Der genaue Prüfumfang ist hierbei je nach Material sowie der Bauweise (wasserundurchlässige/wasserdurchlässige Bauweise) im Einzelfall festzulegen. Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

9.2 Schaumglasschotter als Schüttungen unter Gründungsplatten

Schüttungen, die aus Schaumglasschotter bestehen, dürfen unterhalb von Gründungsplatten dann eingebaut werden, wenn der Schaumglasschotter die folgenden Anforderungen erfüllt, und die Schüttung oberhalb der gesättigten Bodenzone sowie oberhalb des Kapillarsaumes des Grundwassers (i. d. R. 30 cm über HGW (höchster gemessener Grundwasserstand)) eingebaut ist:

Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

9.3 Filtermaterialien zur Behandlung von Niederschlagsabwasser, das versickert werden soll

Für Filtermaterialien, die von Niederschlagswasser durchströmt werden, gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

10 Anforderungen an unterirdische Behälter und Rohre

10.1 Unterirdische Behälter und Rohre aus Beton

Betonausgangsstoffe, die in unterirdischen Behältern und Rohren verwendet werden, die Kontakt zu Grundwasser oder Boden haben, müssen die in den folgenden Abschnitten aufgeführten Anforderungen erfüllen.

Beim Einsatz von natürlichen Gesteinskörnungen ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Bauprodukte, die unter Einsatz von Bildschirmglas hergestellt wurden, dürfen nicht verwendet werden.

10.1.1 Rezyklierte Gesteinskörnungen

Unterirdische Behälter und Rohre aus Beton, der unter Verwendung von rezyklierter Gesteinskörnung hergestellt wird, dürfen nur eingebaut werden, wenn die rezyklierte Gesteinskörnung die folgenden Anforderungen erfüllt:

Beim Einsatz von Fehlchargen von Fertigbetonteilen direkt im Herstellwerk als rezyklierte Gesteinskörnung ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

10.1.2 Industriell hergestellte Gesteinskörnungen

Unterirdische Behälter und Rohre aus Beton, der unter Verwendung industriell hergestellter Gesteinskörnungen hergestellt wird, dürfen nur eingebaut werden, wenn die industriell hergestellten Gesteinskörnungen die folgenden Anforderungen einhalten:

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

Beim Einsatz von kristalliner Hochofenstückschlacke, Hüttensand, Schmelzkammergranulat, Blähglimmer (Vermikulit), Blähperlit, Blähschiefer, Blähton, Ziegelsplitt aus ungebrauchten Ziegeln sowie gesinterter Steinkohlenflugasche und Kesselasche (Kesselsand) aus solchen Wärmekraftwerken, in denen nur Kohle und keine Sekundärbrennstoffe mitverbrannt werden, als Gesteinskörnung (oder Gesteinsmehl) in Beton ist kein Nachweis bezüglich der Stoffgehalte und der Freisetzung gefährlicher Substanzen zu erbringen.

Industriell hergestellte Gesteinskörnungen, die weder in dem vorangegangen Absatz noch in der Tabelle A-4 genannt sind, sind für die Verwendung in Beton unzulässig.

10.1.3 Flugaschen

Unterirdische Behälter und Rohre aus Beton, der unter Verwendung von siliciumreicher Flugasche (i. d. R. Steinkohlenflugasche) hergestellt wird, dürfen nur eingebaut werden, wenn die siliciumreiche Flugasche die folgenden Anforderungen einhält:

Für Bauteile für unterirdische Behälter und Rohre aus Beton, die im Kontakt mit Grundwasser eingebaut werden, gilt:

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-6 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

Für calciumreiche Flugaschen (i. d. R. Braunkohlenflugasche) für unterirdische Behälter und Rohre gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

10.1.4 Sulfathüttenzement und Calciumaluminatsulfatzement

Unterirdische Behälter und Rohre aus Beton, der unter Verwendung von Sulfathüttenzement oder Calciumaluminatsulfatzement hergestellt wird, dürfen in Kontakt mit Boden und/oder Grundwasser nur eingebaut werden, wenn die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 von Festbeton, der unter Verwendung von Sulfathüttenzement oder Calciumaluminatsulfatzement hergestellt ist, die Obergrenzen gemäß Tabelle A-7 ( Anhang A) einhalten.

Der Nachweis, dass die Stoffkonzentrationen im Eluat gemäß CEN/TS 16637-2 die Obergrenzen gemäß Tabelle A-7 ( Anhang A) einhalten, entfällt, falls durch konstruktive Maßnahmen ein direkter Kontakt mit Boden und/oder Grundwasser auszuschließen ist.

10.1.5 Betonzusatzmittel

Betonzusatzmittel, die in unterirdischen Behältern und Rohren aus Beton in Kontakt mit Grundwasser eingesetzt werden, und für die es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik gibt, sind für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

10.2 Kanalsanierungsmittel

Für Kanalsanierungsmittel gibt es keine Technischen Baubestimmungen oder allgemein anerkannten Regeln der Technik, nach denen ihre Auswirkungen auf Boden und Gewässer bewertet werden können. Sie sind aber für die Erfüllung der Anforderungen nach § 3 der Landesbauordnungen, auch im Hinblick auf ihre Auswirkungen auf Boden und Gewässer, von Bedeutung.

______
1) nach Landesrecht

2) Der Begriff "gefährliche Stoffe" wird in der Bauproduktenverordnung verwendet und bezeichnet Stoffe, die in Bezug auf Bauprodukte relevant sind und aufgrund des Risikos schädlicher Auswirkungen durch Vorschriften der EU und/oder der Mitgliedstaaten beschränkt oder verboten sind.

3) International Council of Chemical Associations (ICCA) gemäß United Nations Environment Programme-Vereinbarung 2004 (UNEP-Vereinbarung; http://www.pops.int)

4) Aktiver Einsatz ist der gezielte Einsatz von Stoffen zur Erreichung spezifischer Produkteigenschaften. Als nicht "aktiv eingesetzt" sind Stoffe anzusehen, die als Verunreinigung und/oder als Nebenbestandteil im Produkt vorliegen.

5) Den in der ABuG aufgeführten Prüfwerten für die Freisetzung gefährlicher Stoffe liegen die Geringfügigkeitsschwellen der LAWa zugrunde: LAWA: "Ableitung von Geringfügigkeitsschwellen für das Grundwasser", Dezember 2004. Erhältlich bei Kulturbuch-Verlag GmbH, Postfach 47 04 49, 12313 Berlin oder herunterzuladen von der LAWA-Homepage: www.lawa.de.

.

Anforderungswerte Anhang A

Tabelle A-1: Anforderungswerte an den Feststoffgehalt von Abfällen für den Einsatz in Bauprodukten

Parameter Dimension Obergrenze
Feststoffgehalt Arsen (As) mg/kg 150
Blei (Pb) mg/kg 700
Cadmium (Cd) mg/kg 10
Chrom, gesamt (Cr) mg/kg 600
Kupfer (Cu) mg/kg 400
Nickel (Ni) mg/kg 500
Quecksilber (Hg) mg/kg 5
Thallium (Tl) mg/kg 7
Zink (Zn) mg/kg 1500
PAK16 mg/kg 30
PCB6 mg/kg 0,5

Tabelle A-2: Zulässige Eingangsmaterialien in eine Bauschuttrecyclinganlage zur Herstellung von rezyklierter Gesteinskörnung

1 Beton (Abfallschlüssel 17 01 01 gemäß AVV*)
2 Ziegel (Abfallschlüssel 17 01 02 gemäß AVV*)
3 Fliesen, Ziegel, Keramik (Abfallschlüssel 17 01 03 gemäß AVV*)
4 Gemische aus Beton, Ziegeln, Fliesen und Keramik, die keine gefährlichen Stoffe enthalten (Abfallschlüssel 17 01 07 gemäß AVV*)
5 Bitumengemische mit Ausnahme derjenigen, die unter 17 03 01 fallen (Abfallschlüssel 17 03 02 gemäß AVV*) (hier: Asphalt, teerfrei)
6 Betonabfälle, hier jedoch ohne Betonschlämme (Abfallschlüssel 10 13 14 gemäß AVV*)
7 Boden und Steine, die keine gefährlichen Stoffe enthalten (Abfallschlüssel 17 05 04 gemäß AVV*)
*) Verordnung über das Europäische Abfallverzeichnis ( AVV) vom 10.12.2001, zuletzt geändert durch Artikel 1 der Verordnung vom 04.03.2016 (BGBl. I S. 382).

Tabelle A-3: Anforderungswerte an die Eluatkonzentration und die Feststoffgehalte von rezyklierten Gesteinskörnungen

Parameter Dimension Obergrenze
Eluatkonzentration Arsen (As) µg/l 50
Blei (Pb) µg/l 100
Cadmium (Cd) µg/l 5
Chrom, gesamt (Cr) µg/l 100
Kupfer (Cu) µg/l 200
Nickel (Ni) µg/l 100
Quecksilber (Hg) µg/l 2
Zink (Zn) µg/l 400
Chlorid (Cl-) mg/l 150
Sulfat (SO42-) mg/l 600
Phenolindex µg/l 100
pH-Wert - 7,0-12*
Leitfähigkeit µS/cm 3.000*
Feststoffgehalt Kohlenwasserstoffe mg/kg 1.000**
PAK16 mg/kg 25
PCB6 mg/kg 1
*) Überschreitungen stellen kein Ausschlusskriterium dar, wenn der Betonanteil des untersuchten Materials mindestens 60 Masse-% beträgt.

**) Überschreitungen, die auf Asphaltanteile zurückzuführen sind, stellen kein Ausschlusskriterium dar.

Tabelle A-4: Anforderungswerte an die Eluatkonzentration und die Feststoffgehalte von industriell hergestellten Gesteinskörnungen

Parameter Dimension Stahlwerksschlacke
(SWS)
Kesselasche (Kesselsand) aus Steinkohlekraftwerken mit Mitverbrennung Schlacke aus der Kupfererzeugung
(CUS/CUG)
Gießereisand
(Gießereirestsand GRS)
Gesteinskörnung aus gebrochenem Altglas
Eluatkonzentration Arsen (As) µg/l 40 60 60
Blei (Pb) µg/l 100 200 200
Cadmium (Cd) µg/l 10 6
Chrom, gesamt (Cr) µg/l 100 150 60
Kupfer (Cu) µg/l 100 300 100
Nickel (Ni) µg/l 150 70
Quecksilber (Hg) µg/l 1 2
Vanadium µg/l 250
Zink (Zn) µg/l 200 600 600
Chlorid (Cl-) mg/l 50
Sulfat (SO42-) mg/l 200
Fluorid mg/l 5 1
Phenolindex µg/l 100
DOC µg/l 20.000
pH-Wert - 10-13 8-12 6,0-10 5,5-12 5,5-12
Leitfähigkeit µS/cm 1.500 1.000 700 1.000 2.000
Feststoffgehalt Arsen mg/kg 150 150 150 150 150
Blei mg/kg 700 700 700 700 700
Cadmium mg/kg 10 10 10 10 10
Chrom, gesamt mg/kg 600 600 600 600 600
Kupfer mg/kg 400 400 400 400 400
Nickel mg/kg 500 500 500 500 500
Thallium mg/kg 7 7 7 7 7
Quecksilber mg/kg 5 5 5 5 5
Zink mg/kg 1.500 1.500 1.500 1.500 1.500
Cyanide, gesamt mg/kg 10 10 10 10 10
EOX mg/kg 10 10 10 10 10
BTX mg/kg 1 1 1 1 1
LHKW mg/kg 1 1 1 1 1
Benzo(a)pyren mg/kg 3 3 3 3 3
Kohlenwasserstoffe mg/kg 1.000 1.000 1.000 1.000 1.000
PAK16 mg/kg 20 20 20 20 20
PCB6 mg/kg 0,5 0,5 0,5 0,5 0,5
TOC (Masse)% 5 5 5 5 5

Tabelle A-5: Anforderungswerte an die Feststoffgehalte von siliciumreichen Flugaschen für die Verwendung in Beton

Parameter Dimension Obergrenze
Feststoffgehalt Arsen (As) mg/kg 150
Blei (Pb) mg/kg 700
Cadmium (Cd) mg/kg 10
Chrom, gesamt (Cr) mg/kg 600
Kupfer (Cu) mg/kg 400
Nickel (Ni) mg/kg 500
Quecksilber mg/kg 5
Thallium (Tl) mg/kg 7
Vanadium (V) mg/kg 1.500
Zink (Zn) mg/kg 1.500
PAK16 mg/kg 30
PCB6 mg/kg 0,5
PCDD/PCDF ng/kg TE 100
Glühverlust (Masse-)% 5

Tabelle A-6: Anforderungen an die Stofffreisetzung im Eluat von Festbeton unter Verwendung von siliciumreichen Flugaschen oder industriell hergestellten Gesteinskörnungen

Parameter Dimension Obergrenze
Antimon (Sb) mg/m2 5,5
Arsen (As) mg/m2 11
Barium (Ba) mg/m2 375
Blei (Pb) mg/m2 7,7
Cadmium (Cd) mg/m2 0,56
Chrom VI (Cr) mg/m2 6,6
Chrom, gesamt (Cr) mg/m2 7,7
Kobalt (Co) mg/m2 8,8
Kupfer (Cu) mg/m2 15,4
Molybdän (Mo) mg/m2 38,6
Nickel (Ni) mg/m2 15,4
Quecksilber (Hg) mg/m2 0,22
Thallium (Tl) mg/m2 0,88
Vanadium (V) mg/m2 4,4*
Zink (Zn) mg/m2 63,9
Chlorid (Cl-) mg/m2 275515
Fluorid (F-) mg/m2 826
Sulfat (SO42-) mg/m2 264495
* derzeit ausgesetzt

Tabelle A-7: Anforderungen an die Stofffreisetzung im Eluat von Festbeton, der unter Verwendung von Sulfathüttenzement oder Calciumaluminatsulfatzement hergestellt wird

Parameter Dimension Obergrenze
Antimon (Sb) mg/m2 5,5
Arsen (As) mg/m2 11
Barium (Ba) mg/m2 375
Blei (Pb) mg/m2 7,7
Cadmium (Cd) mg/m2 0,56
Chrom VI (Cr) mg/m2 6,6
Chrom, gesamt (Cr) mg/m2 7,7
Kobalt (Co) mg/m2 8,8
Kupfer (Cu) mg/m2 15,4
Molybdän (Mo) mg/m2 38,6
Nickel (Ni) mg/m2 15,4
Quecksilber (Hg) mg/m2 0,22
Thallium (Tl) mg/m2 0,88
Vanadium (V) mg/m2 4,4*
Zink (Zn) mg/m2 63,9
Chlorid (Cl-) mg/m2 275515
Fluorid (F-) mg/m2 826
Sulfat (SO42-) mg/m2 264495
*) derzeit ausgesetzt

Tabelle A-8: Anforderungswerte an die Eluatkonzentrationen und die Feststoffgehalte von Glasmehl, für die Herstellung von Schaumglasschotter für Schüttungen

Parameter Dimension Obergrenze
Eluatkonzentration Arsen (As) µg/l 20
Blei (Pb) µg/l 80
Cadmium (Cd) µg/l 3
Chrom, gesamt (Cr) µg/l 25
Kupfer (Cu) µg/l 60
Nickel (Ni) µg/l 20
Quecksilber (Hg) µg/l 1
Zink (Zn) µg/l 200
Feststoffgehalt Arsen (As) mg/kg 45
Blei (Pb) mg/kg 210
Cadmium (Cd) mg/kg 3
Chrom, gesamt (Cr) mg/kg 180
Kupfer (Cu) mg/kg 120
Nickel (Ni) mg/kg 150
Quecksilber (Hg) mg/kg 1,5
Zink (Zn) mg/kg 450

.

WDVS mit ETa nach ETAG 004
Stand: Februar 2017
Anhang 11

1 Geltungsbereich

Der Geltungsbereich bezieht sich auf geklebte oder gedübelte und geklebte Wärmedämm-Verbundsysteme (WDVS) mit einer ETa nach ETAG 004 mit Dämmstoffen aus Polystyrol (EPS) nach DIN EN 13163 oder Mineralwolle (MW) nach DIN EN 13162.

Für die Ausführung des WDVS ist DIN 55699:2005-02 zu beachten, sofern im Folgenden nichts anderes bestimmt ist.

2 Standsicherheit und Gebrauchstauglichkeit

2.1 Allgemeine Voraussetzungen

Der Untergrund, auf dem das WDVS angebracht wird, sind Wände aus Mauerwerk oder Beton mit oder ohne Putz oder mit festhaftenden keramischen Belägen.

Die WDVS dürfen unter den folgenden Randbedingungen verwendet werden.

2.1.1 WDVS mit geklebten Polystyrol-(EPS)-Platten

EPS-Platten (Zugfestigkeit senkrecht zur Plattenebene) Winddruck we (Windsoglast)
Mittelwert nach Dämmstoffnorm ≥ TR 100 -1,1 kN/m2

2.1.2 WDVS mit geklebten Mineralwolle-(MW)-Lamellen (Fasern senkrecht zum Untergrund)

2.1.3 WDVS mit Polystyrol-(EPS)-Platten oder mit Mineralwolle-(MW)-Platten (Fasern parallel zum Untergrund) oder mit Mineralwolle-(MW)-Lamellen (Fasern senkrecht zum Untergrund), die mit Dübeln mechanisch befestigt und zusätzlich verklebt sind

Folgende Nachweise nach a) bis c) sind geführt:

a) Der Nachweis der Verankerung der Dübel im Untergrund (Wand):

Sd ≤ NRd

dabei ist

Sd = γF * We
NRd = NRk / γM,U

mit

Sd: Bemessungswert der Windsoglast

NRd: Bemessungswert der Beanspruchbarkeit des Dübels

We: Einwirkungen aus Wind

NRk: charakteristische Zugtragfähigkeit des Dübels
(gemäß Anhang der jeweiligen Dübel-ETA)

γF: 1,5 (Sicherheitsbeiwert für die Einwirkungen aus Wind)

γM,U: Sicherheitsbeiwert des Ausziehwiderstands der Dübel aus dem Untergrund (s. jeweilige Dübel-ETA)

b) Der Nachweis des WDVS:

Sd≤ Rd

dabei ist

Sd = Bemessungswert der Windsoglast

Rd = (RFläche · nFläche + RFuge · nFuge) / γM,S

mit

Rd: Bemessungswert des Widerstands des WDVS

RFuge, RFläche: Die aus dem WDVS resultierende Versagenslast (Mindestwert) im Bereich bzw. nicht im Bereich der Plattenfugen (s. jeweilige WDVS-ETA)

nFuge, nFläche: Anzahl der Dübel (je m2) die im Bereich bzw. nicht im Bereich der Plattenfugen gesetzt werden.

γM,S: 4,0

c) Der Nachweis des Dämmstoffs bei Verdübelung unter dem Bewehrungsgewebe:

Sd ≤ Rd

dabei ist

Sd = (s. vorstehenden Abschnitt)

Rd = NRk / γM,D

mit

NRk: Bemessungswert des Widerstands des Dämmstoffs (Platten: Zugfestigkeit senkrecht zur Plattenebene, Lamellen: Zugfestigkeit in Faserrichtung)

γM,D: 5,0

Die größere Dübelanzahl ist maßgebend, wobei mindestens 4 Dübel/m2 eingebaut sind. Bei MW-Platten mit Dicken > 200 mm sind mindestens 6 Dübel/m2 vorhanden.

3 Brandschutz

Für die nachstehenden bauaufsichtlichen Anforderungen zum Brandverhalten von Außenwänden gemäß Kapitel a 2.1.5 i.V.m. a 2.2.1.2 der Muster-Verwaltungsvorschrift Technische Baubestimmungen (MVV TB) werden für bestimmte WDVS Klassen nach DIN EN 13501-1:2010-01 zugeordnet und Verwendungsregeln angegeben.

3.1 WDVS mit Mineralwolle-(MW)-Dämmstoff nach DIN EN 13162

Bauaufsichtliche Anforderung Klasse nach DIN EN 13501-1:2010-01 Bestimmungen für die Verwendung
WDVS: nichtbrennbar A1
A2 - s1,d0
- Mineralisch gebundene Unter- und Oberputze (Bindemittel Kalk u./o. Zement) mit ≤ 5 % organische Bestandteile in der Trockenmasse oder

- Organisch gebundene Unter- und Oberputze (Bindemittel Kunst- oder Silikonharz bzw. Silikatdispersion) mit Gesamtputzdicke (Unter- und Oberputz) ≤ 10 mm, Gehalt an organischen Bestandteilen in der Trockenmasse von Unter- und Oberputz jeweils ≤ 10 %

- PCS-Wert des Unterputzes ≤ 3,0 MJ/kg

- PCS-Wert des Oberputzes ≤ 2,6 MJ/kg

Dämmstoff: nichtbrennbar A1
A2 - s1,d0
WDVS: schwerentflammbar C -
Dämmstoff: schwerentflammbar C
Bauaufsichtliche Anforderung Klasse nach DIN EN 13501-1:2010-01 Bestimmungen für die Verwendung
WDVS: normalentflammbar E -
Dämmstoff: normalentflammbar E

3.2 WDVS mit expandiertem Polystyrol-(EPS)-Dämmstoff nach DIN EN 13163

Bauaufsichtliche Anforderung Klasse nach DIN EN 13501-1:2010-01 Bestimmungen für die Verwendung
WDVS: schwerentflammbar C -
Dämmstoff: schwerentflammbar C Rohdichte: ≤ 25 kg/m3, Dämmstoffdicke: ≤ 300 mm
konstruktive Maßnahmen (Brandriegel): nichtbrennbar, formstabil bis 1.000 °C,

Rohdichte ≥ 60 kg/m2,

standsicher, auch im Brandfall: Querzugfestigkeit ≥ 5 kPa
Mindestabmessungen:
Höhe: ≥ 200 mm

A2-s1,d0 Brandschutzmaßnahmen gegenBrandeinwirkung von außen:
  1. ein Brandriegel an der Unterkante des WDVS bzw. maximal 90 cm über Geländeoberkante oder genutzten angrenzenden horizontalen Gebäudeteilen (z.B. Parkdächer u. a.),
  2. ein Brandriegel in Höhe der Decke des 1. Geschosses über Geländeoberkante oder angrenzenden horizontalen Gebäudeteilen nach Nr. 1, jedoch zu dem darunter angeordneten Brandriegel mit einem Achsabstand von nicht mehr als 3 m. Bei größeren Abständen sind zusätzliche Brandriegel einzubauen,
  3. ein Brandriegel in Höhe der Decke des 3. Geschosses über Geländeoberkante oder angrenzender horizontaler Gebäudeteile nach Nr. 1, jedoch zu dem darunter angeordneten Brandriegel mit einem Achsabstand von nicht mehr als 8 m. Bei größeren Abständen sind zusätzliche Brandriegel einzubauen,
  4. weitere Brandriegel an Übergängen der Außenwand zu horizontalen Flächen (z.B. Durchgänge, -fahrten, Arkaden), soweit diese in dem durch einen Brand von außen beanspruchten Bereich des 1. bis 3. Geschosses liegen.

Weiterhin ist ein Brandriegel (wie vorstehend beschrieben) maximal 1,0 m unterhalb von angrenzenden brennbaren Bauprodukten (z.B. am oberen Abschluss des WDVS unterhalb eines Daches) in der Dämmebene des WDVS anzuordnen.

Das applizierte WDVS muss von der Unterkante des WDVS bis mindestens zur Höhe des Brandriegels nach Nr. 3 folgende Anforderungen erfüllen:

  • Mindestdicke des Putzsystems (Oberputz und Unterputz) 4 mm, bei Ausführung vorgefertigter, klinkerartiger Putzteile ("Flachverblender") Dicke des Unterputzes ≥ 4 mm,
  • an Gebäudeinnenecken sind in den bewehrten Unterputz Eckwinkel aus Glasfasergewebe, Flächengewicht 280 g/m2 und Reißfestigkeit > 2,3 kN/5 cm (im Anlieferungszustand) einzuarbeiten und
  • Verwendung eines Bewehrungsgewebes mit einem Flächengewicht von ≥ 150 g/m2.

Brandschutzmaßnahmen beiBrandbeanspruchung aus Außenwandöffnungen, oberhalb des Brandriegels nach Nr. 3:

1) Dämmstoffdicken d > 100 mm bis d ≤ 300 mm bei geklebten bzw. geklebt-gedübelten WDVS

Bei Verwendung von:

  • ausschließlich mineralisch oder organisch gebundenen Klebemörteln (keine Klebeschäume)
  • mineralisch gebundenen Unter- und Oberputzen (Bindemittel Zement/Kalk) mit
    • Gehalt an organischen Bestandteilen in der Trockenmasse von Unter- und Oberputz jeweils ≤ 5 %,
    • Nassauftragsmenge jeweils ≥ 2,5 kg/m2,
    • Gesamtputzdicke (Unter- + Oberputz) ≥ 4 mm
    • organisch gebundenen Unter- und Oberputz (Bindemittel: Kunstharz-, Silikonharz- oder Silikatdispersion) mit - Gehalt an organischen Bestandteilen in der Trockenmasse von Unter- und Oberputz jeweils
      ≤ 10 %,
    • Nassauftragsmenge jeweils 2,5 bis 8 kg/m2,
    • Gesamtputzdicke (Unter- + Oberputz) 4 bis 14 mm

sind in folgenden Bereichen Brandschutzmaßnahmen auszuführen:

  1. Oberhalb jeder Öffnung im Bereich der Stürze, mindestens 300 mm seitlich überstehend (links und rechts der Öffnung) und im Bereich gedämmter Laibungen,
  2. beim Einbau von Rollladen oder Jalousien unmittelbar oberhalb von Öffnungen bzw. bei der Montage von Fenstern in der Dämmebene sind diese dreiseitig - oberhalb und an beiden Seiten, mindestens 200 mm hoch bzw. breit, wie unter a) beschrieben - zu umschließen.

Die Ausführung nach a) und b) darf entfallen, wenn mindestens in jedem 2. Geschoss ein horizontal das Gebäude umlaufender

Brandriegel angeordnet wird. Der Brandriegel ist so anzuordnen, dass ein maximaler Abstand von 0,5 m zwischen Unterkante

Sturz und Unterkante Brandriegel eingehalten wird.

2) Dämmstoffdicken ≤ 100 mm:
Der Einbau der Fenster erfolgt bündig mit oder hinter der Rohbaukante.

Bauaufsichtliche Anforderung Klasse nach DIN EN 13501-1:2010-01 Bestimmungen für die Verwendung
WDVS: normalentflammbar E -
Dämmstoff: normalentflammbar E

4 Schallschutz

Ist kein Nennwert angegeben, so ist das WDVS mit einem Wert von ΔRw = -6 dB beim Nachweis des Schallschutzes in Ansatz zu bringen.

5 Wärmeschutz

Der rechnerische Nachweis des Wärmeschutzes ist mit den Bemessungswerten der Wärmeleitfähigkeit nach DIN 4108-4:2017-03 zu führen.

6 Bescheinigung für den Einbau des WDVS

Der Unternehmer, der das WDVS vor Ort einbaut, muss für jedes Bauvorhaben eine Bescheinigung ausstellen, mit der er bestätigt, dass die von ihm eingebauten Bauprodukte (Komponenten) den Bestimmungen der europäischen technischen Zulassung bzw. der Europäischen Technischen Bewertung sowie der jeweils geltenden Einbauanleitung entsprechen und die Bestimmungen dieser Technischen Regel eingehalten sind; die entsprechenden Einstufungen und Eigenschaften sind darin anzugeben. Diese Bescheinigung ist dem Bauherrn zur ggf. erforderlichen Weiterleitung an die zuständige Bauaufsichtsbehörde auszuhändigen.

.

Anwendungsregeln für nicht lasttragende verlorene Schalungsbausätze/-systeme und Schalungssteine für die Erstellung von Ortbeton-Wänden
Stand: Juni 2016
Anhang 12

Vorwort

Diese Technische Regel gilt für die Verwendung bzw. Anwendung von Bauprodukten bzw. Bausätzen, die in den folgenden technischen Spezifikationen geregelt sind:

I) nicht lasttragende verlorene Schalungssteine nach ETa erstellt auf der Grundlage von ETAG 009 [ 1],

II) nicht lasttragende verlorene Schalungssteine aus Normalbeton und Leichtbeton nach DIN EN 15435 [ 2],

III) nicht lasttragende verlorene Schalungssteine aus Holzspanbeton nach DIN EN 15498 [ 3].

Gemeinsam ist den o. g. Bauprodukten bzw. Bausätzen, dass sie ein nicht lasttragendes verlorenes Schalungssystem ausbilden, das die Erstellung von Ortbeton-Wänden ermöglicht. Die Schalungssteine bzw. Schalungsbausätze/-systeme nach I) , II) und III) - im Weiteren Schalungsbausteine genannt - bleiben nach der Betonage des Kernbetons Bestandteil der Wand.

A Spezielle Definitionen

Geometrische Ausbildung des tragenden Kernbetons:

Durch die (nicht lasttragenden) Schalungsbausteine und deren Anordnung wird die geometrische Ausbildung des tragenden Kernbetons definiert. Der Betonkörper darf bewehrt sein.

Die Kernbetondicke ist definiert als kleinste über die Wandhöhe durchgehende Dicke der geometrischen Ausbildung des tragenden Kernbetons.

Typen je nach geometrischer Ausbildung des Kernbetons:

1. Scheibenartiger Typ

Der tragende Kernbeton des Scheibenartigen Typs ist eine Betonwand, die nur an einzelnen Stellen von Abstandhaltern punktförmig unterbrochen ist. Die Abstandhalter sind im Allgemeinen regelmäßig angeordnet. Die Summe der Querschnittsflächen der Abstandhalter darf dabei nur maximal 1 % der Wandfläche betragen.

2. Gittertyp

Der tragende Kernbeton des Gittertyps besteht aus Betonstützen, die durch horizontale Beton-Riegel verbunden sind. Die Stützen und Riegel entstehen durch das Ausbetonieren der Hohlräume der Schalungsbausteine. Die vertikalen Stützen verlaufen über die gesamte Höhe der Wand, und zwar ohne Unterbrechung oder Verringerung der Querschnittsfläche.

3. Säulentyp

Der tragende Kernbeton des Säulentyps besteht aus regelmäßig angeordneten Beton-Stützen ohne horizontale Beton-Riegel oder mit Beton-Riegeln, die keine rechnerisch tragende Verbindung zu den Beton-Stützen aufweisen. Die Stützen entstehen durch das Ausbetonieren der vertikalen Hohlräume der Schalungsbausteine. Die vertikalen Stützen verlaufen über die gesamte Höhe der Wand, und zwar ohne Unterbrechung oder Verringerung der Querschnittsfläche.

4. Sonstige typen Sämtliche typen, die vorstehend nicht definiert sind.

B Standsicherheit und Gebrauchstauglichkeit

B1 Bemessung, Konstruktion und Ausführung

Bemessung, Konstruktion und Ausführung der mit verlorenen Schalungsbausystemen nach o. g. technischen Spezifikationen hergestellten Ortbetonwände erfolgt nach a 1.2.3.1 der MVV TB.

Schalungsbausteine dürfen nur trocken verlegt werden.

Außenwände, die mit Schalungsbausteinen errichtet werden, sind durch Putz oder Bekleidungen vor Umwelteinflüssen zu schützen.

Zur Sicherstellung des Verbunds der Betonstabstähle dürfen die Schalungsbausteine nicht auf die Betondeckung angerechnet werden.

Bei Schalungsbausätzen/-systemen nach ETa basierend auf der ETAG 009 [ 1] sind die Aussagen zum Widerstand gegen den Schalungsdruck und/oder die Aussagen zur maximalen zulässigen Füllhöhe der ETa zu entnehmen. Bei Schalungssteinen nach DIN EN 15435 [ 2] bzw. DIN EN 15498 [ 3] sind die Widerstände gegen den Schalungsdruck (charakteristische Zugfestigkeit der Stege, charakteristische Biegezugfestigkeit der Wandungen) der Leistungserklärung bzw. den begleitenden Dokumenten zu entnehmen.

Sofern keine maximal zulässige Füllhöhe angegeben ist, sind geeignete statische Systeme zu wählen, um die Beanspruchungen der Schalung mit den Lastannahmen infolge des Frischbetondrucks aus DIN 18218 [ 4] realitätsnah zu ermitteln, dabei ist Abschnitt B2 dieser Technischen Regel zu beachten. Für den Nachweis gegen den Schalungsdruck sind die Bemessungswerte der Widerstände (z.B. Stegzugfestigkeit, Biegezugfestigkeit der Wandungen und ggf. Ausreißfestigkeit des Steges aus der Wandung) den Bemessungswerten der Beanspruchungen gegenüberzustellen. Die Teilsicherheitsbeiwerte sind entsprechend DIN EN 1990 [ 5, 6] festzulegen.

B1.1 Bei der Bemessung und Konstruktion nach DIN EN 1992-1-1 [ 7] in Verbindung mit DIN EN 1991-1-1/Na [ 8] einer aus Schalungsbausteinen hergestellten Ortbetonwand des Gittertyps, des Säulentyps bzw. des Sonstigen Typs gilt zusätzlich Folgendes:

  1. Es sind nur vorwiegend ruhende Einwirkungen erlaubt. Die Bemessung und Konstruktion von Tragwerken unter Erdbebeneinwirkung sind mit dieser Technischen Regel nicht geregelt.
  2. Die Schlankheit der Wand bzw. der Kernbetonstützen darf den Wert λ = 85 nicht überschreiten.
  3. Höhere Betondruckfestigkeitsklassen des Ortbetons als C30/37 bzw. LC30/33 dürfen rechnerisch nicht in Ansatz gebracht werden.

B1.2 Beim Nachweis des Widerstandes gegen horizontale Einwirkungen (HED) in Wandebene für Wände des Gittertyps und des Säulentyps gilt zusätzlich:

B2 Zusätzlich zu DIN EN 1992-1-1 [ 7] in Verbindung mit DIN EN 1992-1-1/Na [ 8] gilt Folgendes:

1. Die mindestens einzuhaltende Ausbreitmaßklasse und das Größtkorn der Gesteinskörnung des verwendeten Frischbetons müssen für alle Systeme (auch für Systeme des scheibenartigen Typs) den Angaben der folgenden Tabelle 1 entsprechen.

Tabelle 1

1 2 3
Mindestabmessung des Füllbereichs Größtkorn der Gesteinskörnung Ausbreitmaßklasse
1 < 120 mm ≤ 16 mm F5
2 120 bis 140 mm ≤ 16 mm ≥ F3
3 ≥ 140 mm ≤ 32 mm ≥ F2

Die maximale Ausbreitmaßklasse darf F5 nicht überschreiten.

Frischbeton im unteren Bereich der Ausbreitmaßklasse F3 und darunter muss durch Rütteln verdichtet werden.

Frischbeton im oberen Bereich der Ausbreitmaßklasse F3 und darüber darf durch Stochern verdichtet werden.

Die Festigkeitsentwicklung des Frischbetons muss "mittel" bis "schnell" nach DIN EN 206-1 [ 10] in Verbindung mit DIN 1045-2 [ 11], Tabelle 12 sein.

2. Waagerechte Arbeitsfugen sind vorzugsweise in Höhe der Geschossdecken anzuordnen. Sofern darüber hinausgehende Arbeitsunterbrechungen nicht vermieden werden können, sind vertikale Betonstabstähle (Steckeisen) in den Arbeitsfugen wie folgt anzuordnen:

3. Der Beton darf frei nur bis zu einer Höhe von 2 m fallen, darüber hinaus ist der Beton durch Schüttrohre oder Betonierschläuche von maximal 100 mm Durchmesser zusammenzuhalten und bis kurz vor die Einbaustelle zu führen. Schüttkegel sind durch kurze Abstände der Einfüllstellen zu vermeiden.

Es muss genügend Zwischenraum in der Bewehrung für Schüttrohre oder Betonierschläuche vorgesehen werden. Das DBV-Merkblatt "Betonierbarkeit von Bauteilen aus Beton und Stahlbeton" [ 12] ist zu beachten.

4. Die Wände dürfen nach dem Betonieren nicht mehr als 5 mm pro laufendem Meter Wandhöhe von der Lotrechten abweichen, ab einer Wandhöhe von 3 m allerdings insgesamt maximal 15 mm, und müssen den Ebenheitstoleranzen für Wandoberflächen nach DIN 18202, Tabelle 3, Zeile 6 [ 13], entsprechen.

C Brandschutz

C1 Feuerwiderstand

Bei tragenden Wandkonstruktionen, die unter Verwendung von vorher genannten Schalungssteinen oder Schalungsbausätzen/-systemen erstellt werden, kann der Feuerwiderstand hinsichtlich der Standsicherheit (Tragfähigkeitskriterium R) für die i. d. R. innenliegende, tragende Betonkonstruktion nach DIN EN 1992-1-2 [ 14] unter Berücksichtigung von DIN EN 1992-1-2/Na [ 15] erfolgen, wenn der Nachweis der Standsicherheit unter normalen Temperaturen auf Grundlage von DIN EN 1992-1-1 [ 7] unter Berücksichtigung von DIN EN 1992-1-1/Na [ 8] vollumfänglich möglich ist. In welchem Rahmen eine Beurteilung des Feuerwiderstandes hinsichtlich Raumabschluss und Isolation (EI) oder Tagfähigkeit, Raumabschluss und Isolation (REI) möglich ist, hängt von den entsprechenden dazu erforderlichen Randbedingungen der Nachweisführung nach DIN EN 1992-1-2 [ 14] unter Berücksichtigung von DIN EN 1992-1-2/Na [ 15] ab.

Für den prüftechnischen Nachweis gibt es keine abschließende technische Regel.

C2 Brandverhalten

Für nicht lasttragende verlorene Schalungsbausteine, die aus expandiertem Polystyrol-(EPS)-Dämmstoff nach DIN EN 13163 [16] hergestellt werden, ist hinsichtlich der Zuordnung der Klassifizierung nach DIN EN 13501-1:2010-01 [ 17] zu den bauaufsichtlichen Anforderungen die TR "WDVS mit ETa nach ETAG 004" (Juni 2016) Abschnitt 3.2 1 sinngemäß anzuwenden.

D Schallschutz

Werden Schalungsbausteine in Fällen verwendet, in denen Anforderungen an den Schallschutz bestehen, ist der Nachweis des Schallschutzes nach DIN 4109-1 [ 18] und DIN 4109-32 [ 20] zu führen.

E Wärmeschutz

Der auf Basis der o. g. technischen Spezifikationen nach [ 1], [ 2] und [ 3] angegebene Nennwert des Wärmedurchlasswiderstandes des Schalungsbausteins ist für den Nachweis des Wärmeschutzes in einen Bemessungswert umzurechnen. Der Bemessungswert ist gleich dem Nennwert dividiert durch einen Sicherheitsbeiwert = 1,2.

Für Schalungsbausteine darf der Nachweis des Wärmeschutzes alternativ mit den Bemessungswerten der Wärmeleitfähigkeit der einzelnen Komponenten nach DIN 4108-4 [ 21] geführt werden.

Als integrierte Wärmedämmung - das sind Wärmedämmstoff-Einlagen im Inneren des Schalungsbausteins, die direkt dem Frischbetondruck ausgesetzt sind - dürfen nur Dämmstoffe verwendet werden, deren Druckspannung bei 10 % Stauchung mindestens der Stufe ≥ 100 kPa [ 16] entspricht.

Literatur

[ 1] ETAG 009:2002-06 Nicht lasttragende verlorene Schalungsbausätze/-systeme bestehend aus Schalungs-/Mantelsteinen oder -elementen aus Wärmedämmstoffen und - mitunter - aus Beton
[ 2] DIN EN 15435:2008-10 Betonfertigteile - Schalungssteine aus Normal- und Leichtbeton - Produkteigenschaften und Leistungsmerkmale
[ 3] DIN EN 15498:2008-08 Betonfertigteile - Holzspanbeton-Schalungssteine - Produkteigenschaften und Leistungsmerkmale
[ 4] DIN 18218:2010-01 Frischbetondruck auf lotrechte Schalungen
[ 5] DIN EN 1990:2010-12 Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002
[ 6] DIN EN 1990/NA:2010-12 Nationaler Anhang - National festgelegte Parameter - Eurocode: Grundlagen der Tragwerksplanung
[ 7] DIN EN 1992-1-1:2011-01 Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010
DIN EN 1992-1-1/A1:2015-03
[ 8] DIN EN 1992-1-1/NA:2013-4 Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1 -1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
DIN EN 1992-1-1/NA/A1:2015-12
[ 9] DIN 4103-1:2015-06 Nichttragende innere Trennwände - Teil 1: Anforderungen und Nachweise
[ 10] DIN EN 206-1:2001-07 Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung EN 206-1:2000
DIN EN 206-1/A1:2004-10

DIN EN 206-1/A2:2005-09

[ 11] DIN 1045-2:2008-08 Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 2: Beton - Festlegung, Eigenschaften, Herstellung und Konformität - Anwendungsregeln zu DIN EN 206-1
[ 12] DBV-Merkblatt "Betonierbarkeit von Bauteilen aus Beton und Stahlbeton" - 01/2014
[ 13] DIN 18202:2013-04 Toleranzen im Hochbau - Bauwerke
[ 14] DIN EN 1992-1-2:2010-12 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall; Deutsche Fassung EN 1992-1-2:2004 + AC:2008
[ 15] DIN EN 1992-1-2/NA:2010-12 Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall
[ 16] DIN EN 13163:2015-04 Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Polystyrol (EPS) - Spezifikation; Deutsche Fassung EN 13163:2008
[ 17] DIN EN 13501-1:2010-01 Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten; Deutsche Fassung EN 13501-1:2007+A1:2009
[ 18] DIN 4109-1:2016-07 Schallschutz im Hochbau - Teil 1: Mindestanforderungen
[ 19] DIN 4109-2:2016-07 Schallschutz im Hochbau - Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen
[ 20] DIN 4109-32:2016-07 Schallschutz im Hochbau - Teil 32: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) - Massivbau
[ 21] DIN 4108-4:2017-03 Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte

_______
1) Bei der sinngemäßen Anwendung der TR "WDVS mit ETa nach ETAG 004" bzgl. des Brandverhaltens von verlorenen Schalungsbausätzen aus Polystyrol ist zu beachten, dass nach den Bauordnungen der Länder "schwerentflammbar" nur für die Oberflächen von Außenwänden der Gebäude nach den Gebäudeklassen 4 und 5 gefordert wird. Für Gebäudeklassen 1 bis 3 reicht "normalentflammbar" aus.

.

Nachweis des Widerstandes gegen horizontale Einwirkungen (HED), in Wandebene für Wände des Gittertyps und des Säulentyps, ausgenommen Einwirkungen aus Erdbeben Anlage 1

Die Ermittlung des Bemessungswiderstandes ist unter Wahl eines zutreffenden Modells (siehe nachfolgend, hier: Abb. a, b oder c) und des verwendeten Betons (Normalbeton oder Leichtbeton) vorzunehmen. Bei der Ermittlung der relevanten Einwirkungen ist DIN EN 1992-1 1 [ 7] in Verbindung mit DIN EN 1992-1-1/Na [ 8] zu berücksichtigen.

Die Teilsicherheitsbeiwerte für die "außergewöhnliche Bemessungssituation" sind entsprechend denen für die "ständige und vorübergehende Bemessungssituation" zu wählen.

Dabei können drei statische Modelle gemäß Abb. 1 angewandt werden:

  1. Rahmenmodell (unbewehrter Beton)
  2. Modell mit durchgehenden Streben (unbewehrter Beton)
  3. Balkenmodell (bewehrter Beton)

Abb. 1: Statische Modelle für horizontale Scherkräfte HEd

a) Rahmenmodell b) Modell mit durchgehenden Streben c) Balkenmodell

Der Nachweis von Horizontalkräften in Wandlängsrichtung (Scherkräften) HEd ist wie folgt zu führen:

HEd ≤ HRd,i mit i = 1 bis 3(Bemessungswiderstände der u. g. einzelnen Modelle)

Unter der kombinierten Einwirkung von horizontalen und vertikalen Lasten müssen die Beton-Stützen in Zustand I bleiben, d. h. es darf keine Zugspannung auftreten, andernfalls muss der Planer in den Stützen vertikale Bewehrung zur Deckung der Zugkräfte anordnen.

Die Nachweise HEd ≤ HRd,i der vorgeschlagenen statischen Modelle dürfen mittels folgender Ansätze geführt werden:

A Rahmenmodell

Der Bemessungswiderstand HRd,1 des Rahmenmodells hängt von der Zugfestigkeit der Beton-Riegel ab. Nimmt man eine parabolische Schubflussverteilung über die Wandlänge L gemäß der Balkentheorie und einen Nullpunkt des Moments in der Mitte der Beton-Riegel an, so ist die Tragfähigkeit eines Beton-Riegels erreicht, wenn die Zugspannung auf Grund des maximalen Biegemoments am Schnittpunkt Riegel/Stütze die Zugfestigkeit des Betons überschreitet. Der maximale Wert der Schubbeanspruchung HEd ergibt sich aus Gleichung (1):

max HEd = (3/2)(HEd/L), ( 1)

und führt so zu einer maximalen Schubkraft maxVED,r in einem Beton-Riegel von

maxVEd,r = max HEdhs = (3/2)(HEd/L) hs ( 2)

Das anliegende maximale Biegemoment maxMED,r in einem Beton-Riegel ist

maxMEd,r = max VEd,r (lr/2) = (3/4)(HEd/L) hslr ( 3)

Mit einem vorgegebenen Widerstandsmoment Zrdes Beton-Riegels und einer charakteristischen Betonzugfestigkeit ƒetk;0,05 ergibt sich für eine Wand folgender Bemessungswiderstand:

HRd,1 = (4/3)(L/hs)(Zr/lr)(ƒctk;0,05/ γet) ( 4)

In Gleichung (4) gelten folgende Bezeichnungen (vgl. Bild 2):

HRd,1 Bemessungsscherfestigkeit gemäß Rahmenmodell;

L Wandlänge;

hs Abstand zwischen den Achsen der Beton-Riegel;

lr lichte Länge des Beton-Riegels;

Zr Widerstandsmoment des Beton-Riegels;

ƒctk;0,05 charakteristische Betonzugfestigkeit;

ƒctk;0,05 = η1 · 0,7 · 0,3 · ƒck2/3 = η1 · 0,21 · ƒck2/3 [MN/m2];

ƒck charakteristische Druckfestigkeit des Betons (Zylinder);

γet mit 1,5 Teilsicherheitsbeiwert für die Betonzugfestigkeit des Ortbetons;

η1 mit 1,0 für Normal-Ortbeton;
0,40+0,60 · ρ/2200 für Ortbeton aus Leichtbeton mit einem Rechenwert der Trockenrohdichte ρ in [kg/m3].

Abb. 2: Bezeichnungen

B Modell mit durchgehenden Druck-Streben

Der Bemessungswiderstand HRd, 2 des Modells mit durchgehenden Streben hängt von der Festigkeit dern Streben ab, die durchgehend von einem Geschoss zum nächsten durch die Wand verlaufen (vgl. Abb. 1 und 3).

Abb. 3: Höhe dc einer durchgehenden Strebe

Der Bemessungswiderstand einer Strebe wird gemäß Gleichung (5) ermittelt. Der Neigungswinkel Ø der Streben ergibt sich aus Abb. 3.

Der Bemessungswiderstand HRd,2 ergibt sich aus Gleichung (5):

HRd,2 = n* ·ν· ƒcd · bc · dc · cosθ ≤ NEd · cotθ ( 5)

mit

HRd, 2= Bemessungswiderstand gemäß dem Modell mit durchgehenden Streben;

n* = Anzahl der durchgehenden Streben in einer Wand;

ƒed= Bemessungswert der Druckfestigkeit des Betons;

ν = 0,6(1 - ƒck[MN/m2/250] (entspricht Gleichung 6.6N in [ 8] bzw. [ 9]);

bc= Dicke der Strebe;

dc= Höhe der Strebe (mindestens 70 mm);

θ = Neigungswinkel der Streben 30° ≤ θ ≤ 60°;

NEd = Bemessungswert der einwirkenden Normalkraft.

C Balkenmodell

Der Bemessungswiderstand HRd, 3 gemäß dem Balkenmodell kann mit Hilfe der Bemessungsregeln bestimmt werden, die für Stahlbetonbalken gelten. Dabei verläuft die Beton-Druckstrebe nicht über das ganze Geschoss, sondern nur innerhalb der Beton-Stütze. Die Beton-Druckstrebe wird dabei mit Hilfe der Bewehrung zurückgehängt. Diese "Rückhänge-Bewehrung" wird dabei durch horizontale Betonstabstähle gebildet, die innerhalb der Beton-Riegel des Stützen/Riegel-Systems verlaufen. Eine ausreichende Endverankerung der horizontalen Stäbe - z.B. durch Schlaufen der Bewehrung - ist gemäß DIN EN 1992-1-1 [ 7] in Verbindung mit DIN EN 1992-1-1/Na [ 8], Abschnitt 8, sicherzustellen.

Der Bemessungswiderstand HRd, 3a der Rückhänge-Bewehrung ergibt sich aus Gleichung (6):

HRd, 3a = min(Ash,r · ƒyd;Asv,r · ƒyd  · (H/b)) ( 6)

mit

HRd, 3a = Bemessungswiderstand der Rückhänge-Bewehrung gemäß dem Balkenmodell;

Ash, r= Querschnitt der horizontalen Rückhänge-Bewehrung;

Asv, r = Querschnitt der vertikalen Betonstab-Bewehrung;

b = Breite der betrachteten Beton-Stütze;

ƒyd= Bemessungswert der Festigkeit des Stahls der Rückhänge-Bewehrung.

Der Bemessungswiderstand HRd,3b der Druckstrebe ergibt sich in Analogie zu (5) aus Gleichung (7):

HRd,3b = n* ·ν· ƒcd · bc · dc · cosθ ( 7)

mit

n* = 1;

θ = Neigungswinkel der Strebe 30° ≤ θ ≤ 60°.

Der Bemessungswiderstand HRd,3 des Balkenmodells nach Abb. 1c) ergibt sich nach Gleichung (8):

HRd,3 = min(HRd,3a;HRd,3b) ( 8)

.

Richtlinie über Rolladenkästen (RokR)
Stand: Juli 2016
Anhang 13

1 Geltungsbereich

Diese Richtlinie gilt für werkmäßig hergestellte Rollladenkästen (einschließlich Rollladenkastendeckel), an die Anforderungen hinsichtlich des Wärme- oder Schallschutzes gestellt werden.

Die Bestandteile des Rollladenkastens müssen aus mindestens normalentflammbaren Baustoffen bestehen.

Für werkmäßig hergestellte Rollladenkästen mit statisch tragender Funktion im Bauwerk ist zusätzlich die in Abschnitt C 2 bekannt gemachte technische Regel für das jeweilige Bauprodukt zu beachten.

2 Wärmeschutz

2.1 Anforderungen an den Mindestwärmeschutz

Es werden Anforderungen an die Begrenzung des Wärmedurchgangs sowie an die Oberflächentemperatur gestellt.

Der Rollladenkasten muss die Anforderung des Mindestwärmeschutzes nach DIN 4108-2:2013-02, Abschnitt 5.1.3, erfüllen.

Diese Anforderung gilt als erfüllt, wenn der nach Abschnitt 2.2 berechnete oder der nach Abschnitt 2.3 gemessene Wärmedurchgangskoeffizient Usb des Rollladenkastens Usb ≤0,85 W/(m2 · K) und der nach Abschnitt 2.2 berechnete Temperaturfaktor fRsi ≥ 0,70 beträgt.

2.2 Berechnung des Wärmedurchgangskoeffizienten Usb und des Temperaturfaktors fRsi

Der Wärmedurchgangskoeffizient Usb des Rollladenkastens ist zweidimensional nach DIN EN ISO 10077-2:2012-06 zu berechnen und auf zwei Wert anzeigende Ziffern zu runden. Die Berechnung ist mit einem Blendrahmen mit 60 mm Bautiefe, der für die Zwecke dieser Richtlinie als adiabat zu betrachten ist, durchzuführen. Der Blendrahmen ist bündig mit der Außenseite des tatsächlichen oder geplanten Fensterrahmens anzusetzen, unabhängig von dessen Breite.

Bei der zweidimensionalen Berechnung ist die Wärmestromdichte auf die maßgebliche Höhe bsb nach DIN EN ISO 10077-2:2012-06 zu beziehen.

Der Temperaturfaktor fRsi des Rollladenkastens ist zweidimensional nach DIN EN ISO 10211:2008-04 in Verbindung mit DIN EN ISO 10077-2:2012-06 zu berechnen und auf zwei Wert anzeigende Ziffern zu runden. Die Berechnung ist mit einem Blendrahmen mit 70 mm Bautiefe aus Holz der Wärmeleitfähigkeit λ = 0,13 W/(m · K) unter den Randbedingungen aus DIN 4108-2:2013-02 durchzuführen. Für die Übergangswiderstände sind die Randbedingungen nach Beiblatt 2 zu DIN 4108:2006-03 anzusetzen. Der obere Baukörperanschluss wird für die Zwecke dieser Richtlinie als adiabat betrachtet.

Für die Bestandteile des Rollladenkastens sind bei den Berechnungen die jeweiligen Bemessungswerte der Wärmeleitfähigkeit nach DIN EN ISO 10456:2010-05, DIN EN ISO 10077-2:2012-06 oder DIN 4108-4:2017-03 anzusetzen. Für eingeschäumte Dämmschichten aus Polyurethan-Schaum ist als Bemessungswert der Wärmeleitfähigkeit λ = 0,035 W/(m · K) anzusetzen. Die äquivalente Wärmeleitfähigkeit des Rollraums ist nach DIN EN ISO 10077-2:2012-06 zu bestimmen. Geeignete Dichtungen, z.B. Bürstendichtungen, dürfen zur Verringerung der Schlitzbreite in Ansatz gebracht werden.

2.3 Messung des Wärmedurchgangskoeffizienten Usb

Der Wärmedurchgangskoeffizient Usb des Rollladenkastens ist nach DIN EN 12412-4:2003-11 zu bestimmen.

3 Schallschutz

Sollen für den Rollladenkasten schalldämmende Eigenschaften ausgewiesen werden, so ist der zugehörige Rechenwert für das bewertete Schalldämm-Maß entweder:

zu ermitteln.

Prüfberichte nach DIN EN 20140-3:1995-05 und DIN EN ISO 140-3:2005-03 in Verbindung mit DIN EN ISO 717-1:1997-01, DIN EN ISO 717-1:2006-11 bzw. DIN EN ISO 717-1:2013-06, die vor dem Inkrafttreten dieser Ausgabe der Verwaltungsvorschrift Technische Baubestimmungen erstellt wurden, dürfen weiterhin verwendet werden.

4 Wesentliche Merkmale für das Ü-Zeichen

Im Ü-Zeichen eines Rollladenkastens, der den Anforderungen der Abschnitte 1 und 2 entspricht, ist als wesentliches Merkmal der Wärmedurchgangskoeffizient Usb, bei Rollladenkästen mit schalldämmenden Eigenschaften nach Abschnitt 3 zusätzlich das bewertete Schalldämm-Maß "RW = ..." anzugeben.

Zu den im Ü-Zeichen anzugebenden wesentlichen Merkmalen gehört auch die Angabe, für welche Kombination von Rollladenkasten mit Rollladenkastendeckel diese wesentlichen Merkmale gelten.

Für Rollladenkästen mit statisch tragender Funktion im Bauwerk sind die Regelungen zur Kennzeichnung gemäß der in Bezug genommenen Technischen Regel zusätzlich zu beachten.

Bezugsquellennachweis


Normen (DIN, DIN V, DIN V ENV, DIN EN, DIN EN ISO, DIN CEN/TS, DIN SPEC, Eurocode), AD-Merkblätter, DIN-Fachberichte
Beuth Verlag GmbH
Burggrafenstraße 6
10787 Berlin
DAfStb-Richtlinie Betonbau beim Umgang mit wassergefährdenden Stoffen - BUmwS
Ausgabe März 2011
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb Beuth Verlag GmbH
EADs (European Assessment Documents)
Amtsblatt der Europäischen Union
eur-lex.europa.eu
DAfStb-Richtlinie für Beton mit verlängerter Verarbeitbarkeitszeit (Verzögerter Beton)
Ausgabe November 2006
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb Beuth Verlag GmbH
ETAGs (European Technical Approvals Guidelines)
www.eota.eu
DAfStb-Richtlinie für die Herstellung und Verwendung von Trockenbeton und Trockenmörtel (Trockenbeton-Richtlinie) - TrBMR -
Ausgabe Juni 2005
Beuth Verlag GmbH
Anpassungsrichtlinie Stahlbau mit Änderung und Ergänzung
Ausgabe Dezember 2001
DAfStb-Richtlinie für die Herstellung und Verwendung von zementgebundenem Vergussbeton und Vergussmörtel - VeBMR -
Ausgabe November 2011
Beuth Verlag GmbH
DIBt Mitteilungen, Sonderheft Nr. 11, Nov. 2002
Deutsches Institut für Bautechnik (DIBt)
Kolonnenstraße 30 B
10829 Berlin
DAfStb-Richtlinie Massige Bauteile aus Beton
Ausgabe April 2010
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb
Beuth Verlag GmbH
Anwendungsrichtlinie für Arbeitsgerüste nach DIN EN 12811 -1
Fassung November 2005
Deutsches Institut für Bautechnik (DIBt)
DAfStb-Richtlinie Schutz und Instandsetzung von Betonbauteilen (Instandsetzungsrichtlinie)
Ausgabe Oktober 2001

Teil 1: Allgemeine Regelungen und Planungsgrundsätze

Teil 2: Bauprodukte und Anwendung einschl. 2. Berichtigung 2005-12

Teil 3: Anforderungen an die Betriebe und Überwachung der Ausführung

Teil 4: Prüfverfahren sowie 2. Berichtigung 2005-12 und 3. Berichtigung 2014-09
Beuth Verlag GmbH

Anwendungsrichtlinie für Traggerüste nach DIN EN 12812
Fassung August 2009
Deutsches Institut für Bautechnik (DIBt)
DAfStb-Richtlinie Selbstverdichtender Beton - SVBR
Ausgabe September 2012
Beuth Verlag GmbH
Bau- und Prüfgrundsätze Beschichtungen von Auffangräumen
Ausgabe Februar 2009
Deutsches Institut für Bautechnik (DIBt)
DAfStb-Richtlinie - Stahlfaserbeton
Ergänzungen und Änderungen zu DIN EN 1992-1-1/NA, DIN EN 206-1 in Verbindung mit DIN 1045-2 und DIN EN 13670 in Verbindung mit DIN 1045-3, Teile 1 bis 3
Ausgabe November 2012
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb Beuth Verlag GmbH
Prüfgrundsätze für Schornsteinreinigungsverschlüsse und Rußabsperrer
Ausgabe November 2012
Deutsches Institut für Bautechnik (DIBt)
Muster einer Verordnung über den Bau und Betrieb von Garagen - MGarVO
Ausgabe Mai 2008
www.is-argebau.de
Bauaufsichtliche Richtlinie über die Lüftung fensterloser Küchen, Bäder und Toilettenräume in Wohnungen
Ausgabe April 2009
www.is-argebau.de
Muster einer Verordnung über den Bau von Betriebsräumen für elektrische Anlagen - EltBauVO Ausgabe Januar 2009
www.is-argebau.de
DAfStb-Richtlinie Beton nach DIN EN 206-1 und DIN 1045-2 mit rezyklierten Gesteinskörnungen nach DIN 4226-100; Teil 1 - RBrezG/1
Ausgabe September 2010
Beuth Verlag GmbH
Muster-Feuerungsverordnung - MFeuV
Ausgabe Februar 2010
www.is-argebau.de
DAfStb-Richtlinie Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton (Alkali-Richtlinie)
Ausgabe Oktober 2013
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb
Beuth Verlag GmbH
Muster-Hersteller und Anwenderverordnung - MHAVO
Ausgabe September 2008
www.is-argebau.de
DASt-Richtlinie 021
Schraubenverbindungen aus feuerverzinkten Garnituren M39 bis M72 entsprechend
Muster-Richtlinie über bauaufsichtliche Anforderungen an Schulen - MSchulbauR
Ausgabe April 2009
www.is-argebau.de
DIN EN 14399-4, DIN EN 14399-6
Ausgabe September 2013
Stahlbau Verlags- und Service GmbH
Muster-Richtlinie über bauaufsichtliche Anforderungen an Wohnformen für Menschen mit Pflegebedürftigkeit oder mit Behinderung - MWR
Ausgabe Mai 2012
www.is-argebau.de
DASt-Richtlinie 022
Feuerverzinken von tragenden Stahlbauteilen
Ausgabe August 2009
Stahlbau Verlags- und Service GmbH
Muster-Richtlinie über brandschutztechnische Anforderungen an hochfeuerhemmende Bauteile in Holzbauweise - M-HFHHolzR
Ausgabe Juli 2004
www.is-argebau.de
DVS Richtlinie DVS 1708:2009-09
Beuth Verlag GmbH
Muster-Richtlinie über brandschutztechnische Anforderungen an Leitungsanlagen (Muster-Leitungsanlagenrichtlinie - MLAR): 2015-02,
Redaktionsstand 05.04.2016
www.is-argebau.de
Empfehlungen für den Entwurf und die Berechnung von Erdkörpern mit Bewehrungen aus Geokunststoffen - EBGEO
Deutsche Gesellschaft für Geotechnik
Ausgabe 2010
Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG
Muster-Richtlinie über brandschutztechnische Anforderungen an Lüftungsanlagen - M-LüAR
Ausgabe Dezember 2015
www.is-argebau.de
ETB-Richtlinie "Bauteile, die gegen Absturz sichern"
Ausgabe Juni 1985
Mitteilungen IfBt Heft 2/1987
Deutsches Institut für Bautechnik (DIBt)
Muster-Richtlinie über brandschutztechnische Anforderungen an Systemböden - MSysBöR
Ausgabe September 2005
www.is-argebau.de
ETB-Richtlinie zur Begrenzung der Formaldehydemission in die Raumluft bei Verwendung von Harnstoff-Formaldehydharz-Ortschaum
Ausgabe April 1985
Beuth Verlag GmbH
Muster-Richtlinie über den Bau und Betrieb von Hochhäusern - MHHR
Ausgabe Februar 2012
www.is-argebau.de
Fachregel des Ofen- und Luftheizungsbauhandwerks - TR-OL 2009
Ausgabe 2010
Zentralverband Sanität Heizung Klima
Rathausallee 6
53757 St. Augustin
Muster-Richtlinie über den baulichen Brandschutz im Industriebau - MIndBauRL
Ausgabe Juli 2014
www.is-argebau.de
Hinweise für die Montage von Dübelverankerungen
Ausgabe Oktober 2010
Deutsches Institut für Bautechnik (DIBt)
Prüfgrundsätze zur Erteilung von allgemeinen bauaufsichtlichen Prüfzeugnissen für Übergänge von Bauwerksabdichtungen auf Bauteile aus Beton mit hohem Wassereindringwiderstand - PG-ÜBB Ausgabe September 2010
Deutsches Institut für Bautechnik (DIBt)
Lehmbau Regeln
Ausgabe Februar 2008
Dachverband Lehm e. V.
Prüfplan für Beschichtungs- und Einhausungssysteme zur Sanierung Pentachlorphenol(PCP)- belasteter Holzbauteile
Stand: Januar 2006
Deutsches Institut für Bautechnik (DIBt)
Muster-Richtlinie über den Brandschutz bei der Lagerung von Sekundärstoffen aus Kunststoff - MKLR
Ausgabe Juni 1996
www.is-argebau.de
Richtlinie für den Nachweis der Standsicherheit von Metall-Kunststoff-Verbundprofilen
Ausgabe August 1986
Mitteilungen IfBt Heft 6/1986
Deutsches Institut für Bautechnik (DIBt)
Muster-Richtlinien über Flächen für die Feuerwehr
Ausgabe Oktober 2009
www.is-argebau.de
Richtlinie für die Bewertung und Sanierung PCB-belasteter Baustoffe und Bauteile in Gebäuden
Ausgabe September 1994
Mitteilungen DIBt Heft 2/1995
Deutsches Institut für Bautechnik (DIBt)
Muster-Verordnung über den Bau und Betrieb von Beherbergungsstätten - MBeVO
Ausgabe Mai 2014
www.is-argebau.de
Richtlinie für die Bewertung und Sanierung PCP-belasteter Baustoffe und Bauteile in Gebäuden
Ausgabe Oktober 1996
Mitteilungen DIBt Heft 1/1997
Deutsches Institut für Bautechnik (DIBt)
Muster-Verordnung über den Bau und Betrieb von Verkaufsstätten - MVKVO
Ausgabe Juli 2014
www.is-argebau.de
Richtlinie für die Bewertung und Sanierung schwach gebundener Asbestprodukte in Gebäuden
Ausgabe Januar 1996
Mitteilungen DIBt Heft 3/1996
Deutsches Institut für Bautechnik (DIBt)
Muster-Verordnung über den Bau und Betrieb von Versammlungsstätten - MVStättVO
Ausgabe Juli 2014
www.is-argebau.de
Richtlinie für die Herstellung und Verwendung von Trockenbeton und Trockenmörtel - TrBMR
Ausgabe Juni 2005
Deutscher Ausschuss für Stahlbeton e. V. - DAfStb
Beuth Verlag GmbH
Prüfgrundsätze zur Erteilung von allgemeinen bauaufsichtlichen Prüfzeugnissen für Abdichtungen im Verbund mit Fliesen- und Plattenbelägen
Teil 1: Flüssig zu verarbeitende Abdichtungen - PG AIV-F
Ausgabe Mai 2014
Teil 2: Bahnenförmige Abdichtungen - PG AIV-B
Ausgabe Mai 2014
Teil 3: Plattenförmige Abdichtungen - PG AIV-P
Ausgabe August 2012
Deutsches Institut für Bautechnik (DIBt)
Richtlinie für die Überwachung von Wand-, Decken- und Dachtafeln für Holzhäuser in Tafelbauart nach DIN 1052 Teil 1 bis Teil 3
Fassung Juni 1992
Mitteilungen IfBt Heft 1/1993
Deutsches Institut für Bautechnik (DIBt)
Prüfgrundsätze zur Erteilung von allgemeinen bauaufsichtlichen Prüfzeugnissen für Bauwerksabdichtungen mit Flüssigkunststoffen - PG-FLK
Ausgabe Juni 2010
Deutsches Institut für Bautechnik (DIBt)
Richtlinie für Standardisierung des Oberbaues von Verkehrsflächen RStO 01
FGSV Verlag GmbH
Wesselinger Str. 17
50999 Köln
Prüfgrundsätze zur Erteilung von allgemeinen bauaufsichtlichen Prüfzeugnissen für Bauwerksabdichtungen mit mineralischen Dichtungsschlämmen - PG-MDS
Ausgabe Januar 2014
Deutsches Institut für Bautechnik (DIBt)
Technische Regeln für brennbare Flüssigkeiten ( TRbF)
UWS Umweltmanagement GmbH
Grotendonker Str. 61
47626 Kevelaer
www.umwelt-online.de
Prüfgrundsätze zur Erteilung von allgemeinen bauaufsichtlichen Prüfzeugnissen für Fugenabdichtungen in Bauteilen aus Beton mit hohem Wassereindringwiderstand im erdberührten Bereich - PG-FBB
Teil 1: Abdichtungen für Arbeitsfugen und Sollrissquerschnitte
Ausgabe Oktober 2012
Deutsches Institut für Bautechnik (DIBt)
Verzeichnis der Prüf-, Überwachungs- und Zertifizierungsstellen nach den Landesbauordnungen (PÜZ-Verzeichnis)
Deutsches Institut für Bautechnik (DIBt)
Richtlinie für Windenergieanlagen
Einwirkungen und Standsicherheitsnachweise für Turm und
Gründung
Fassung Oktober 2012, Korrigierte Fassung März 2015
Deutsches Institut für Bautechnik (DIBt)
Richtlinie über automatische Schiebetüren in Rettungswegen - AutSchR
Ausgabe Dezember 1997
www.is-argebau.de
Richtlinie über brandschutztechnische Anforderungen an hochfeuerhemmende Bauteile in Holzbauweise - HFHHolzR
Fassung Juli 2004
www.is-argebau.de
Richtlinie über die Anforderungen an Auffangwannen aus Stahl mit einem Rauminhalt bis 1.000 Liter - StawaR -
Ausgabe September 2011
Deutsches Institut für Bautechnik (DIBt)
Richtlinie über elektrische Verriegelungssysteme von Türen in Rettungswegen - EltVTR
Ausgabe Dezember 1997
www.is-argebau.de
Richtlinie zur Bemessung von Löschwasser-Rückhalteanlagen beim Lagern wassergefährdender Stoffe - LöRüRL
Ausgabe August 1992
www.is-argebau.de
Stahl-Eisen-Werkstoffblätter (SEW) des Vereins
Deutscher Eisenhüttenleute (Stahlinstitut VDEh) SEW 400, 7.
Ausgabe, Februar 1997
Verlag Stahleisen GmbH
Sohnstraße 65
40237 Düsseldorf
Technische Lieferbedingungen/Technische Prüfvorschriften für Baustoffe zur Herstellung von Brückenbelägen auf Beton mit einer Dichtungsschicht aus Flüssigkunststoff (TL/TP BEL - B, Teil 3)
Ausgabe 1995
Bundesministerium für Verkehr, Abteilung Straßenbau
Verkehrsblatt-Verlag Borgmann GmbH & Co KG
Schleefstraße 14
44287 Dortmund
Technische Lieferbedingungen/Technische Prüfvorschriften für Oberflächenschutzsysteme
(TL/TP OS)
Ausgabe 1996
Verkehrsblatt-Verlag Borgmann GmbH & Co KG


ENDE

umwelt-online - Demo-Version


(Stand: 17.09.2024)

Alle vollständigen Texte in der aktuellen Fassung im Jahresabonnement
Nutzungsgebühr: 90.- € netto (Grundlizenz)

(derzeit ca. 7200 Titel s.Übersicht - keine Unterteilung in Fachbereiche)

Preise & Bestellung

Die Zugangskennung wird kurzfristig übermittelt

? Fragen ?
Abonnentenzugang/Volltextversion