umwelt-online: Bestimmung der Toxizität

zurück


Methoden zur Bestimmung der Toxizität

B.13/14. Mutagenität - Rückmutationstest unter Verwendung von Baktieren

Anhang V
zur RL 67/548/EWG

zur aktuellen Fassung

Stand: RL 2000/32/EG, ABl. 2000 L 136 S. 1

B.13/14. 1. Methode

Diese Methode entspricht den OECD TG 471, Bacterial Reverse Mutation Test (1997).

B.13/14. 1.1. Einleitung

Beim Rückmutationstest an Bakterien werden Stämme von Salmonella typhimurium und Escherichia coli, die Aminosäure benötigen, zum Nachweis von Punktmutationen verwendet, die Substitution, Addition oder Deletion eines oder mehrerer DNA-basenpaare umfassen (1) (2) (3). Der unter Verwendung von Bakterien durchgeführte Rückmutationstest beruht auf dem Nachweis von Mutationen, durch die Mutationen in den entsprechenden Stämmen rückgängig gemacht und die funktionale Kapazität der Bakterien zur Synthetisierung einer essentiellen Aminosäure wiederhergestellt wird. Die Revertanten-Bakterien lassen sich an ihrer Fähigkeit zum Wachstum ohne die vom Elternstamm benötigte Aminosäure erkennen.

Punktmutationen sind die Ursache für zahlreiche humangentische Erkrankungen. Es spricht manches dafür, daß Punktmutationen in Onkogenen und Tumorsuppressorgenen somatischer Zellen an der Entstehung von Krebs bei Menschen und Versuchstieren beteiligt sind. Der Rückmutationstest an Bakterien ist wenig zeitaufwendig, kostengünstig und relativ leicht durchzuführen. Viele Versuchsstämme weisen mehrere Merkmale auf, die ihnen eine größere Empfindlichkeit beim Nachweis von Mutationen verleihen, darunter reaktive DNA-Sequenzen an den Reversionsorten, erhöhte Zelldurchlässigkeit gegenüber großen Molekülen und Eliminierung von DNA-Reparatursystemen oder Anstieg der fehlerhaften DNA-Reparaturprozesse. Die Spezifität der Versuchsstämme kann wertvollen Aufschluß über die typen der von gentoxischen Agenzien ausgelösten Mutationen liefern. Für Rückmutationstests unter Verwendung von Bakterien steht ein sehr umfangreicher Bestand an Ergebnissen für eine Vielzahl von Strukturen zur Verfügung, und es wurden gründlich erprobte Methoden zur Prüfung von Chemikalien mit unterschiedlichen physikalisch-chemischen Eigenschaften, darunter flüchtige Verbindungen, entwickelt.

Siehe auch Allgemeine Einleitung Teil B.

B.13/14. 1.2. Definitionen

Ein Rückmutationstest bei Salmonella typhimurium oder Escherichia coli dient zum Nachweis von Mutationen, die in einem Stamm auftreten, der eine Aminosäure (Histidin bzw. Tryptophan) benötigt, und zur Bildung eines Stammes führen, der nicht auf eine Aminosäurezufuhr von außen angewiesen ist.

basenpaaraustauschmutagene sind Agenzien, die in DNa eine basenveränderung verursachen. Bei einem Reversionstest kann diese Veränderung am Ort der ursprünglichen Mutation oder an einem zweiten Ort des bakteriellen Genoms auftreten.

Rasterschubmutagene sind Agenzien, die eine Addition oder Deletion von einem oder mehreren basenpaaren in der DNa verursachen, wodurch sich der Leseraster der RNS verändert.

B.13/14. 1.3. Ausgangsüberlegungen

Beim Rückmutationstest an Bakterien werden prokaryotische Zellen verwendet, die sich im Hinblick auf Faktoren wie Aufnahme, Stoffwechsel, Chromosomenstruktur und DNA-Reparaturprozesse von Säugetierzellen unterscheiden. In vitro durchgeführte Versuche erfordern in der Regel den Zusatz eines exogenen FremdstoffMetabolisierungssystems. Mit einem In-vitro-Metabolisierungssystem lassen sich aber die In-vivo-Bedingungen bei Säugetieren nicht gänzlich nachvollziehen. Der Test gibt daher keinen direkten Aufschluß über das mutagene und kanzerogene Potential einer Substanz bei Säugetieren. Der unter Verwendung von Bakterien durchgeführte Rückmutationstest dient in der Regel zur Erstuntersuchung auf gentoxische Aktivität, insbesondere auf Punktmutationen. Aus dem umfangreichen Datenbestand geht hervor, daß sich zahlreiche chemische Stoffe, die bei diesem Test einen positiven Befund ergeben, auch bei anderen Prüfungen als mutagen erweisen. Es gibt allerdings Beispiele dafür, daß mutagene Agenzien nicht durch diesen Test nachgewiesen werden. Zurückzuführen ist dies auf die spezifische Art des ermittelten Endpunkts und auf Unterschiede in der Stoffwechselaktivierung bzw. in der Bioverfügbarkeit. Andererseits können Faktoren, die eine verstärkte Empfindlichkeit des Rückmutationstests an Bakterien bewirken, zu einer Überbewertung der mutagenen Wirkung führen.

Der Rückmutationstest an Bakterien eignet sich möglicherweise nicht zur Bewertung bestimmter Klassen von chemischen Substanzen, so etwa von stark bakteriziden Verbindungen (z.B. bestimmten Antibiotika) und Stoffen, die vermutlich (oder nachweislich) in das Zellreplikationssystem von Säugetieren eingreifen (z.B. bestimmten topoisomerasehemmern und Nucleosidanalogen). In diesen Fällen sind wohl Mutationstests an Säugetieren eher angebracht.

Zahlreiche Verbindungen, die bei diesem Test einen positiven Befund ergeben, haben zwar eine kanzerogene Wirkung auf Säugetiere, doch besteht keine absolute Korrelation. Ausschlaggebend ist die chemische Klasse, und bestimmte Kanzerogene sind durch diesen Test nicht nachweisbar, weil ihre Wirkung auf anderen, nicht gentoxischen Mechanismen oder in Bakterienzellen fehlenden Mechanismen beruht.

B.13/14. 1.4. Prinzip der Prüfmethode

Suspensionen von Bakterienzellen werden mit und ohne ein exogenes Stoffwechselaktivierungssystem mit der Prüfsubstanz behandelt. Bei der Platteninkorporationsmethode werden die Suspensionen mit Schichtagar vermischt und unmittelbar danach auf einem Minimalmedium ausgestrichen. Bei der Vorinkubationsmethode wird das Prüfgemisch bebrütet und dann mit Schichtagar vermischt, bevor es auf einem Minimalmedium ausgestrichen wird. Bei beiden Verfahren wird nach einer Inkubationszeit von zwei oder drei Tagen die Anzahl der Revertanten-Kolonien bestimmt und mit der Anzahl der spontan Revertanten-Kolonien auf den Lösungsmittel-Kontrollplatten verglichen.

Es wurden verschiedene Verfahren zur Durchführung des Rückmutationstests an Bakterien beschrieben. Zu den gebräuchlichsten Verfahren zählen die Platteninkorporationsmethode (1) (2) (3) (4), die Vorinkubationsmethode (2) (3) (5) (6) (7) (8), die Fluktuationsmethode (9) (10) und die Suspensionsmethode (11). Beschrieben wurden auch Abänderungen zur Untersuchung von Gasen oder Dämpfen (12).

Die hier beschriebenen Verfahren beziehen sich im wesentlichen auf die Platteninkorporations- und Vorinkubationsmethode. Beide sind für die Durchführung von Versuchen mit und ohne Stoffwechelaktivierungssystem geeignet. Einige Substanzen lassen sich möglicherweise besser mit der Vorinkubationsmethode nachweisen. Sie gehören chemischen Klassen an, zu denen unter anderem kurzkettige aliphatische Nitrosamine, bivalente Metalle, Aldehyde, Azofarbstoffe und Diazoverbindungen, Pyrollizidinalkaloide, Allylverbindungen und Nitroverbindungen zählen (3). Dabei wird berücksichtigt anerkannt, daß bestimmte Klassen von Mutagenen bei Anwendung von Standardverfahren wie der Platteninkorporations- oder Vorinkubationsmethode nicht immer nachweisbar sind. Diese sind als "Sonderfälle, anzusehen, zu deren Nachweis unbedingt alternative Verfahren eingesetzt werden sollten. Es könnten sich die folgenden "Sonderfälle, ergeben (mit Beispielen für möglicherweise geeignete Nachweisverfahren): Azofarbstoffe und Diazoverbindungen (3) (5) (6) (13), Gase und flüchtige chemische Stoffe (12) (14) (15) (16) sowie Glycoside (17) (18). Abweichungen von den Standardverfahren sind wissenschaftlich zu begründen.

B.13/14. 1.5. Beschreibung der Prüfmethode

B.13/14. 1.5.1. Vorbereitungen

B.13/14. 1.5.1.1. Bakterien

Frische Bakterienkulturen sollten bis zur späten exponentiellen oder frühen stationären Wachstumsphase kultiviert werden (ca. 109 Zellen pro ml). Kulturen, die sich im Spätstadium der stationären Phase befinden, sind nicht heranzuziehen. Entscheidend ist dabei, daß die zur Prüfung verwendeten Kulturen einen hohen Anteil an lebensfähigen Bakterien enthalten. Der Anteil läßt sich entweder anhand historischer Kontrolldaten über Wachstumskurven bestimmen oder aber für jeden Versuch gesondert durch Bestimmung der Anzahl lebensfähiger Zellen mittels eines Plattentests.

Die empfohlene Inkubationstemperatur beträgt 37 °C.

Es sind mindestens fünf Bakterienstämme zu verwenden. Dazu sollten vier Stämme von S. typhimurium (Ta 1535; Ta 1537 oder TA97a oder TA97; TA98; und TA100) gehören, die erwiesenermaßen zuverlässige und in anderen Labors reproduzierbare Ergebnisse liefern. Diese vier Stämme von S. typhimurium weisen an primären Reversionslocus GC-basenpaare auf. Bekannt ist, daß möglicherweise bestimmte oxidierende Mutagene, crosslinking induzierende Agenzien und Hydrazine damit nicht nachzuweisen sind. Diese Substanzen lassen sich durch Stämme von E. Coli WP2 oder S. typhimurium TA102 (19) nachweisen, die am primären Reversionslocus ein AT-basenpaar aufweisen. Empfohlen wird daher eine Kombination folgender Stämme:

Zum Nachweis cross-linking induzierender Mutagene ist es vielleicht ratsam, TA102 einzubeziehen oder einen reparatur-profizienten Stamm von E. coli (z.B. E. coli WP 2 oder E. coli WP2 (pKM101)) hinzuzugeben.

Zur Vorbereitung der Stammkulturen, zur Verifizierung der Marker und zur Lagerung sollten bewährte Verfahren verwendet werden. Der wachstumsbedingte Aminosäurebedarf ist für jedes tiefgefrorene Stammkulturpräparat nachzuweisen (Histidin bei Stämmen von S. typhimurium und Tryptophan bei Stämmen von E. coli). Auch andere phänotypische Merkmale sind zu überprüfen, so ggf. das Vorhandensein oder Fehlen von R-Faktor-Plasmiden (d. h. die Ampicillinresistenz bei den Stämmen TA98, TA100 und TA97a oder TA97, WP2 uvra und WP2 uvra (pKM101) und die Ampicillin- + Tetracyclinresistenz bei den Stämmen TA102); das Vorhandensein charakteristischer Mutationen (d. h. rfa-Mutation bei S. typhimurium durch Empfindlichkeit gegenüber Kristallviolett und uvrA-Mutation bei E. coli oder uvrB-Mutation bei S. typhimurium durch Empfindlichkeit gegenüber ultraviolettem Licht) (2) (3). Zudem sollten die Stämme eine Anzahl von Spontan-Revertanten-Kolonien in Häufigkeitsbereichen aufweisen, die anhand der historischen Kontrolldaten des Labors zu erwarten sind, und möglichst innerhalb des in der Literatur angegebenen Bereichs liegen.

B.13/14. 1.5.1.2. Medium

Verwendet werden geeigneter Minimalagar (z.B. aus Vogel-Bonner-Minimalmedium E und Glucose) und Schichtagar mit Histidin und Biotin oder Tryptophan, damit mehrere Zellteilungen erfolgen können (1) (2) (9).

B.13/14. 1.5.1.3. Stoffwechselaktivierung

Die Behandlung der Bakterien mit der Prüfsubstanz sollte sowohl mit als auch ohne Zusatz eines geeigneten Stoffwechselaktivierungssystems erfolgen. Das am häufigsten verwendete System ist eine durch Ko-Faktoren ergänzte post-mitochondriale Fraktion (S9) aus der Leber von Nagetieren, die mit enzyminduzierenden Agenzien wie Aroclor 1254 (1) (2) oder einem Gemisch aus Phenobarbital und b-Naphthoflavon (18) (20) (21) vorbehandelt wurden. Die post-mitochondriale Fraktion wird im S9-Gemisch in der Regel in Konzentrationen von 5 bis 30 % v/v verwendet. Wahl und Status des Stoffwechselaktivierungssystems sind möglicherweise von der geprüften chemischen Klasse abhängig. In bestimmten Fällen ist es ggf. zweckmäßig, mehr als eine Konzentration der post-mitochondrialen Fraktion zu verwenden. Bei Azofarbstoffen und Diazoverbindungen ist möglicherweise eher der Einsatz eines reduktiven Stoffwechselaktivierungssystems angebracht (6) (13).

B.13/14. 1.5.1.4. Prüfsubstanz/Zubereitung

Feste Prüfsubstanzen sollten vor der Behandlung der Bakterien in geeigneten Lösungsmitteln oder Vehikeln gelöst oder suspendiert und ggf. verdünnt werden. Flüssige Prüfsubstanzen können den Versuchssystemen vor der Behandlung direkt beigegeben und/oder verdünnt werden. Es sind frische Zubereitungen der Prüfsubstanz zu verwenden, es sei denn, die Stabilität der Substanz bei Lagerung wird nachgewiesen. Das Lösungsmittel/Vehikel sollte nicht im Verdacht stehen, mit der Prüfsubstanz eine chemische Reaktion einzugehen, und es sollte mit dem Überleben der Bakterien und der S9-Aktivität kompatibel sein (22). Werden keine allgemein bekannten Lösungsmittel/Vehikel verwendet, so sind Daten zur Kompatibilität beizubringen. Es ist zu empfehlen, als erste Wahl möglichst die Verwendung eines wäßrigen Lösungsmittels/Vehikels in Erwägung zu ziehen. Bei der Prüfung wasserinstabiler Substanzen sollten die verwendeten organischen Lösungsmittel frei von Wasser sein.

B.13/14. 1.5.2. Prüfbedingungen

B.13/14. 1.5.2.1. Versuchsstämme (siehe 1.5.1.1)

B.13/14. 1.5.2.2. Expositionskonzentrationen

Zu den Kriterien, die bei der Bestimmung der höchsten Konzentration der Prüfsubstanz zu berücksichtigen sind, zählen die Zytotoxizität und die Löslichkeit im Endgemisch.

Es ist möglicherweise sinnvoll, die Zytotoxizität und Unlöslichkeit in einem Vorversuch zu bestimmen. Aufschluß über die Zytotoxizität geben der zahlenmäßige Rückgang der Revertanten-Kolonien, der Wegfall bzw. die Verkleinerung des Hintergrundrasens oder die Überlebensrate der behandelten Kulturen. Die Zytotoxizität einer Substanz verändert sich möglicherweise bei Zusatz eines Stoffwechselaktivierungssystems. Die Unlöslichkeit sollte als Ausfällung im Endgemisch unter realen Prüfbedingungen ermittelt werden und mit dem bloßen Auge erkennbar sein.

Bei löslichen nicht zytotoxischen Substanzen wird eine maximale Prüfkonzentration von 5 mg/Platte bzw. 5µl/Platte empfohlen. Im Falle nicht zytotoxischer Substanzen, die bei 5 mg/Platte bzw. 5µl/Platte nicht löslich sind, sollte eine oder mehrere der geprüften Konzentrationen im Endgemisch unlöslich sein. Prüfsubstanzen, die sich bereits unter 5 mg/Platte bzw. 5 µl/Platte als zytotoxisch erweisen, sind bis zu einer zytotoxischen Konzentration zu prüfen. Die Ausfällung sollte die Bewertung nicht beeinträchtigen.

Es sind mindestens fünf verschiedene analysierbare Konzentrationen der Prüfsubstanz zu verwenden, wobei beim ersten Versuch der Abstand zwischen den Prüfpunkten etwa eine halbe Log-Phase (d. h. √ 10) beträgt. Kleinere Abstände sind ggf. angebracht, wenn eine Konzentrations-Effekt-Beziehung untersucht wird. Bei der Bewertung von Substanzen, die größere Mengen an potentiell mutagenen Verunreinigungen enthalten, ist die Prüfung bei Konzentrationen über 5 mg/Platte bzw. 5 µl/Platte in Betracht zu ziehen.

B.13/14. 1.5.2.3. Negativ- und Positivkontrollen

Für jeden Versuch sind gleichzeitig stammspezifische Positiv- und Negativ-(Lösungsmittel- oder Vehikel-)Kontrollen mit oder ohne Zusatz eines Stoffwechselaktivierungssystems anzulegen. Für die Positivkontrollen sind Konzentrationen zu wählen, die die Wirksamkeit des jeweiligen Versuchs belegen. Bei Versuchen mit Stoffwechselaktivierungssystem sollten die Positivkontrollsubstanzen anhand der verwendeten Bakterienstämme ausgewählt werden.

Die folgenden Substanzen gelten als Beispiele für geeignete Positivkontrollen bei Versuchen mit Stoffwechselaktivierung:

Substanz CAS-Nummer EINECS-Nummer
9,10-Dimethylanthracen 781-43-1 212-308-4
7,12-Dimethylbenz[a]anthracen 57-97-6 200-359-5
Benzo[a]pyren 50-32-8 200-028-5
2-Aminoantracen 613-13-8 210-330-9
Cyclophosphamid 50-18-0 200-015-4
Cyclophosphamidmonohydrat 6055-19-2  

Die folgende Substanz eignet sich als Positivkontrolle bei der reduktiven Stoffwechselaktivierungsmethode

Substanz CAS-Nummer EINECS-Nummer
Kongorot 573-58-0 209-358-4

2-Aminoantracen sollte nicht als alleiniger Gradmesser für die Wirksamkeit des S9-Gemischs dienen. Bei Ver- wendung von 2-Aminoanthracen sollte jede Charge von S9 ebenfalls durch ein Mutagen gekennzeichnet sein, das eine Stoffwechselaktivierung durch mikrosomale Enzyme, z.B. Benzo[a]pyren oder Dimethylbenzanthracen, erfordert.

Die folgenden Substanzen sind Beispiele für stammspezifische Positivkontrollen bei Versuchen ohne exogenes Stoffwechselaktivierungssystem:

Substanz CAS-Nummer EINECS-Nummer Stamm
Natriumazid 26628-22-8 247-852-1 Ta 1535 und Ta 100
2-Nitrofluoren 607-57-8 210-138-5 Ta 98
9-Aminoacridin 90-45-9 201-995-6 Ta 1537, Ta 97 und Ta 97a
ICR 191 17070-45-0 241-129-4 Ta 1537, Ta 97 und Ta 97a
Cumolhydroperoxid 80-15-9 201-254-7 Ta 102
Mitomycin C 50-07-7 200-008-6 WP2uvra und Ta 102
N-ethyl-N-nitro-N-nitrosoguanidin 70-25-7 200-730-1 WP2, WP2uvra und WP2uvrA(pKM101)
4-Nitroquinolin-1-oxid 56-57-5 200-281-1 WP2, WP2uvra und WP2uvrA(pKM101)
Furylfuramid (AF2) 3688-53-7   Plasmide enthaltende Stämme

Es können auch andere geeignete Positivkontrollsubstanzen verwendet werden. Ggf. sollten Positivkontrollen herangezogen werden, die der gleichen chemischen Klasse angehören wie der Prüfstoff. Es sind Negativkontrollen, die allein aus dem Lösungsmittel oder Vehikel ohne Prüfsubstanz bestehen und auf die gleiche Weise wie die Behandlungskulturen behandelt werden, anzulegen. Darüber hinaus sollten auch unbehandelte Kontrollen verwendet werden, wenn nicht historische Kontrolldaten belegen, daß das gewählte Lösungsmittel keine schädlichen oder mutagenen Wirkungen hervorruft.

B.13/14. 1.5.3. Verfahren

Bei der Platteninkorporationsmethode (1) (2) (3) (4) ohne Stoffwechselaktivierung werden gewöhnlich 0,05 ml oder 0,1 ml Prüflösung, 0,1 ml frische Bakterienkultur (mit ca. 108 lebensfähigen Zellen) und 0,5 ml sterile Pufferlösung mit 2,0 ml Schichtagar vermischt. Für Ansätze mit Stoffwechselaktivierung werden gewöhnlich 0,5 ml Stoffwechselaktivierungsgemisch, das eine ausreichende Menge post-mitochondrialer Fraktion (im Bereich von 5 bis 30 % v/v im Stoffwechselaktivierungsgemisch) enthält, mit Schichtagar (2,0 ml) und zugleich mit den Bakterien und der Prüfsubstanz/Prüflösung vermischt. Der Inhalt jedes Röhrchens wird vermischt und auf der Oberfläche einer Minimalagarplatte ausgegossen. Vor der Inkubation läßt man den Schichtagar verfestigen.

Bei der Vorinkubationsmethode (2) (3) (5) (6) wird die Prüfsubstanz/Prüflösung ca. 20 Minuten oder länger bei 30 - 37 °C mit dem Versuchsstamm (der ca. 108 lebensfähige Zellen enthält) und der sterilen Pufferlösung oder dem Stoffwechselaktivierungssystem (0,5 ml) vorinkubiert, bevor sie mit dem Schichtagar vermischt und auf der Oberfläche einer Minimalagarplatte ausgegossen wird. Gewöhnlich werden 0,05 oder 0,1 ml Prüfsubstanz/Prüflösung, 0,1 ml Bakterien und 0,5 ml S9-Gemisch oder sterile Pufferlösung mit 2,0 ml Schichtagar vermischt. Die Röhrchen sind während der Vorinkubation mit Hilfe eines Schüttlers zu belüften.

Um die Schwankungsbreite hinreichend beurteilen zu können, sind für jede Dosisstufe drei Platten anzulegen. Die Verwendung von zwei Platten ist vertretbar, wenn dies wissenschaftlich begründet wird. Durch den gelegentlichen Verlust einer Platte wird der Versuch nicht zwangsläufig entwertet.

Gasförmige oder flüchtige Substanzen sind mit Hilfe geeigneter Methoden zu prüfen, z.B. in hermetisch verschlossenen Gefäßen (12) (14) (15) (16).

B.13/14. 1.5.4. Inkubation

Sämtliche Platten des jeweiligen Versuchs sind 48 bis 72 Stunden bei 37 °C zu bebrüten. Nach Ablauf der Inkubationszeit wird die Anzahl der Revertanten-Kolonien je Platte ermittelt.

B.13/14. 2. Daten

B.13/14. 2.1. Aufbereitung der Ergebnisse

Die Daten sind als Anzahl der Revertanten-Kolonien je Platte anzugeben. Die Anzahl der Revertanten-Kolonien sowohl auf den Negativkontrollplatten (Lösungsmittelkontrolle und ggf. unbehandelte Kontrolle) als auch auf den Positivkontrollplatten ist ebenfalls zu dokumentieren. Für die Prüfsubstanz und die Positivkontrollen sowie Negativkontrollen (unbehandelte und/oder Lösungsmittelkontrollen) sind die Zahlenwerte der einzelnen Platten, die mittlere Anzahl der Revertanten-Kolonien je Platte und die Standardabweichung aufzuführen.

Bei einer eindeutigen positiven Reaktion ist eine Verifizierung nicht erforderlich. Nicht eindeutige Ergebnisse sind durch weitere Prüfungen abzuklären, möglichst unter Abänderung der Versuchsbedingungen. Negative Befunde sind durch Einzelfallprüfung zu bestätigen. In jenen Fällen, in denen eine Bestätigung negativer Befunde nicht für notwendig erachtet wird, ist dies zu begründen. Bei Folgeversuchen sollte die Abänderung der Studienparameter zur Erweiterung des Umfangs der bewerteten Bedingungen in Betracht gezogen werden.

Zu den Studienparametern, die für eine Abänderung in Frage kommen, gehören die Abstände der Konzentrationen, die Prüfmethode (Platteninkorporation oder flüssige Vorinkubation) und der Stoffwechselaktivierungsstatus.

B.13/14. 2.2. Bewertung und Interpretation der Ergebnisse

Es gibt mehrere Kriterien für die Bestimmung eines positiven Ergebnisses, wie z.B. eine konzentrationsbezogene Zunahme im Prüfbereich und/oder eine reproduzierbare Zunahme der Anzahl der Revertanten-Kolonien je Platte bei einer oder mehreren Konzentrationen in mindestens einem Stamm mit oder ohne Stoffwechselaktivierungssystem (23). Zunächst sollte die biologische Relevanz der Ergebnisse untersucht werden. Als Hilfsmittel bei der Bewertung der Versuchsergebnisse können statistische Methoden dienen (24). Die statistische Signifikanz sollte aber nicht der einzige bestimmende Faktor für eine positive Reaktion sein.

Eine Prüfsubstanz, bei der die Ergebnisse nicht den obengenannten Kriterien entsprechen, gilt bei diesem Versuch als nichtmutagen.

Auch wenn die meisten Versuche eindeutig positive oder negative Ergebnisse liefern, erlaubt der Datensatz in seltenen Fällen keine definitive Aussage über die Aktivität der Prüfsubstanz. Es kommt vor, daß sich die Ergebnisse unabhängig davon, wie oft der Versuch wiederholt wird, weiterhin als nicht eindeutig oder als fragwürdig erweisen.

Positive Befunde beim Rückmutationstest an Bakterien deuten darauf hin, daß die Prüfsubstanz durch basenaustausch oder Rasterverschiebungen Punktmutationen im Genom von Salmonella typhimurium und/oder Escherichia coli hervorruft. Negative Befunde sind ein Anzeichen dafür, daß die Prüfsubstanz unter diesen Versuchsbedingungen bei den geprüften Spezies keine mutagene Wirkung auslöst.

B.13/14. 3. Abschlussbericht

Prüfbericht

Der Prüfbericht muß die folgenden Angaben enthalten:

Lösungsmittel/Vehikel

Stämme:

Prüfbedingungen:

Ergebnisse:

Diskussion der Ergebnisse.

Schlußfolgerungen.

B.13/14. 4. Literaturhinweise

(1) Ames, B. N., McCann, J. and Yamasaki E. (1975), Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian-Microsome Mutagenicity Test, Mutation Res., 31, pp. 347 -364.

(2) Maron, D. M. and Ames, B. N. (1983), Revised Methods for the Salmonella Mutagenicity Test, Mutation Res., 113, pp. 173 -215.

(3) Gatehouse, D., Haworth, S., Cebula, T., Gocke, E., Kier, L., Matsushima, T., Melcion, C., Nohmi, T., Venitt, S. and Zeiger, E. (1994), Recommendations for the Performance of Bacterial Mutation Assays, Mutation Res., 312, pp. 217 -233.

(4) Kier, L. D., Brusick, D. J., Auletta, A. E., Von Halle, E. S., Brown, M. M., Simmon, V. F., Dunkel, V., McCann, J., Mortelmans, K., Prival, M., Rao, T. K. and Ray V. (1986), The Salmonella typhimurium/ Mammalian Microsomal Assay: a Report of the U.S. Environmental Protection Agency Gene-Tox Program, Mutation Res., 168, pp. 69 -240.

(5) Yahagi, T., Degawa, M., Seino, Y.Y., Matsushima, T., Nagao, M., Sugimura, T. and Hashimoto, Y. (1975), Mutagenicity of Carcinogen Azo Dyes and their Derivatives, Cancer Letters, 1, pp. 91 -96.

(6) Matsushima, M., Sugimura, T., Nagao, M., Yahagi, T., Shirai, A. and Sawamura, M. (1980), Factors Modulating Mutagenicity Microbial Tests, in: Short-term Test Systems for Detecting Carcinogens, ed. Norpoth K. H. and Garner, R. C., Springer, Berlin-Heidelberg-New York, pp. 273 -285.

(7) Gatehouse, D. G., Rowland, I. R., Wilcox, P., Callender, R. D. and Foster R. (1980), Bacterial Mutation Assays, in: Basic Mutagenicity Tests: UKEMS Part 1 Revised , ed. D. J. Kirkland, Cambridge University Press, pp. 13 -61.

(8) Aeschacher, H. U., Wolleb, U. and Porchet, L. (1987), Liquid Preincubation Mutagenicity Test for Foods, J. Food Safety, 8, pp. 167 -177.

(9) Green, M. H. L., Muriel, W. J. and Bridges, B. A. (1976), Use of a simplified fluctuation test to detect low levels of mutagens, Mutations Res., 38, pp. 33 -42.

(10) Hubbard, S. A., Green, M. H. L., Gatehouse, D. and Bridges, J. W. (1984), The Fluctuation Test in Bacteria, in: Handbook of Mutagenicity Test Procedures , 2nd Edition, ed. Kilbey, B. J., Legator, M., Nichols, W. and Ramel, C., Elsevier, Amsterdam-New York-Oxford, pp. 141 -161.

(11) Thompson, E. D. and Melampy, P. J. (1981), An Examination of the Quantitative Suspension Assay for Mutagenesis with Strains of Salmonella typhimurium, Environmental Mutagenesis, 3, pp. 453 -465.

(12) Araki, A., Noguchi, T., Kato, F. and Matsushima, T. (1994), Improved Method for Mutagenicity Testing of Gaseous Compounds by Using a Gas Sampling Bag, Mutation Res., 307, pp. 335 -344.

(13) Prival, M. J., Bell, S. J., Mitchell, V. D., Reipert, M. D. and Vaughan, V. L. (1984), Mutagenicity of Benzidine and Benzidine-Congener Dyes and Selected Monoazo Dyes in a Modified Salmonella Assay, Mutation Res., 136, pp. 33 -47.

(14) Zeiger, E., Anderson B. E., Haworth, S., Lawlor, T. and Mortelmans, K. (1992), Salmonella Mutagenicity Tests. V. Results from the Testing of 311 Chemicals, Environ. Mol. Mutagen., 19, pp. 2 -141.

(15) Simmon, V., Kauhanen K. and Tardiff, R. G. (1977), Mutagenic Activity of Chemicals Identified in Drinking Water, in Progress in Genetic Toxicology, D. Scott, B. Bridges and F. Sobels (eds.) Elsevier, Amsterdam, pp. 249 -258.

(16) Hughes, T. J., Simmons, D. M., Monteith, I. G. and Claxton, L. D. (1987), Vaporisation Technique to Measure Mutagenic Activity of Volatile Organic Chemicals in the Ames/Salmonella Assay, Environmental Mutagenesis, 9, pp. 421 -441.

(17) Matsushima, T., Matsumoto, A., Shirai, M., Sawamura, M. and Sugimura T. (1979), Mutagenicity of the Naturally Occurring Carcinogen Cycasin and Synthetic Methylazoxy Methane Conjugates in Salomonella typhimurium, Cancer Res., 39, pp. 3780 -3782.

(18) Tamura, G., Gold, C., Ferro-Luzzi, A. and Ames, B. N. (1980), Fecalase: a Model for Activation of Dietary Glycosides to Mutagens by Intestinal Flora, Proc. Natl. Acad. Sci. USA, 77, pp. 4961 -4965.

(19) Wilcox, P., Naidoo, A., Wedd, D. J. and Gatehouse, D. G. (1990), Comparison of Salmonella typhimurium Ta 102 with Escherichia coli WP2 Tester strains, Mutagenesis, 5, pp. 285 -291.

(20) Matsushima, T., Sawamura, M., Hara, K. and Sugimura T. (1976), a Safe Substitute for Polychlorinated Biphenyls as an Inducer or Metabolic Activation Systems, in: In Vitro Metabolic Activation in Mutagenesis Testing, eds. F. J. de Serres et al. Elsevier, North Holland, pp. 85 -88.

(21) Elliot, B. M., Combes, R. D., Elcombe, C. R., Tatehouse, D. G., Gibson, G. G., Mackay, J. M. and Wolf, R. C. (1992), Alternatives to Aroclor 1254-induced S9 in in vitro Genotoxicity Assays, Mutagenesis, 7, pp. 175 -177.

(22) Maron, D., Katzenellenbogen, J. and Ames, B. N. (1981), Compatibility of Organic Solvents with the Salmonella/Microsome Test, Mutation Res., 88, pp. 343 -350.

(23) Claxton, L. D., Allen J., Auletta, A., Mortelmans, K., Nestmann, E. and Zeiger, E. (1987), Guide for the Salmonella typhimurium/Mammalian Microsome Tests for Bacterial Mutagenicity, Mutation Res., 189, pp. 83 -91.

(24) Mahon, G. A. T., Green, M. H. L., middleton, B., Mitchell, I., Robinson, W. D. and Tweats, D. J. (1989), Analysis of Data from Microbial Colony Assays, in: UKEMS Sub-Committee on Guidelines for Mutagenicity Testing. Part II. Statistical Evaluation of Mutagenicity Test Data, ed. Kirkland, D. J., Cambridge University Press, pp. 28 -65.

weiter .

umwelt-online - Demo-Version


(Stand: 04.08.2022)

Alle vollständigen Texte in der aktuellen Fassung im Jahresabonnement
Nutzungsgebühr: 90.- € netto (Grundlizenz)

(derzeit ca. 7200 Titel s.Übersicht - keine Unterteilung in Fachbereiche)

Preise & Bestellung

Die Zugangskennung wird kurzfristig übermittelt

? Fragen ?
Abonnentenzugang/Volltextversion